Pro Hibernate 3

DAVE MINTER AND JEFF LINWOOD

Apress*

Pro Hibernate 3
Copyright © 2005 by Dave Minter and Jeff Linwood

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-511-4
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin

Technical Reviewer: Dilip Thomas

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,
Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Associate Publisher: Grace Wong

Project Manager: Beth Christmas

Copy Edit Manager: Nicole LeClerc

Copy Editor: Linda Marousek

Production Manager: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor: Dina Quan

Proofreader: April Eddy

Indexer: Michael Brinkman

Artist: April Milne

Interior Designer: Van Winkle Design Group

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street, 6th
Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergarten-
str. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Downloads section.

To our families.

Contents at a Glance

About the AUthOrS iii
About the Technical Reviewer i XV
ACKNOWIBAgMENTS Xvii
INtrodUCHION Xix
PART 1 Hibernate 3 Primer
CHAPTER 1 AnIntroduction to Hibernate 3 3
CHAPTER 2 Integrating and Configuring Hibernate 13
CHAPTER 3 Building a Simple Application.................................. 27
CHAPTER 4 Using Annotations with Hibernate 65
PART 2 Hibernate 3 Reference
CHAPTER 5 The Persistence Lifecycle 85
CHAPTER 6 Creating Mappings it 93
CHAPTER 7 Querying Objects with Criteria 131
CHAPTER 8 QueryingwithHQLand SQL 145
CHAPTER 9 Usingthe Session, 159
CHAPTER 10 Design Considerations with Hibernate 3 175
CHAPTER 11 Events and Interceptorscoiiiiiii... 189
CHAPTER 12 HibernateFilters 203
CHAPTER 13 Fitting Hibernate into the Existing Environment 213
CHAPTER 14 Upgrading from Hibernate 2 223
INDEX .. 229

Contents

About the AUthOrS iii
About the Technical Reviewer i XV
ACKNOWIBAgMENTS Xvii
INtrodUCHION Xix

PART 1 Hibernate 3 Primer

CHAPTER 1 An Introduction to Hibernate3 3
Plain Old Java Objects (POJOS) ...t 4
Origins of Hibernate and Object Relational Mapping 5

EJBs As a Persistence Solution 7

Hibernate As a Persistence Solution 7
A Hibernate Hello World Example it 8
MappINgs 9
Database Generation 10
Bootstrapping Your Configuration 10
The Relationship of Hibernate 3SwithEJB3 12
SUMMArY 12

CHAPTER 2 Integrating and Configuring Hibernate 13
Integrating Hibernate with Your Java Application 13
DeployingHibernate 14

Required Libraries for Running Hibernate 3 14
Enterprise JavaBeans 3l 15
Java Management Extensions (JMX) and Hibernate 15
Hibernate Configuration o i, 16
Hibernate Properties il 16
XML Configuration i 20
Mapping Documents 21
Naming Strategy 22
Using a Container-Managed Data Source 23

vii

viii

CONTENTS

CHAPTER 3

CHAPTER 4

The Session Factoryo o 23
SALDIaleCtso 24
Database Independence, 26
SUMMANY ... 26
Building a Simple Application 27
Installthe Tools o 27
Hibernate 3 27
HSQL 1.7.3.3 ... 27
ANt 1,62 . 29
Create a Hibernate ConfigurationFile 31
Run the Message of the Day Example 33
Persisting Multiple Objectsco i, 38
Creating Persistence Classes ..., 39
Creating the Object Mappings, 44
CreatingtheTableso, 47
SBSSIONS . .. 49
The Session and Related Objects 49
Usingthe Session ... 50
Building Data Access Objects (DAOS)ccoviin... 52
The Example Client 59
SUMMArY ... 63
Using Annotations with Hibernate 65
Creating Hibernate Mappings with Annotations 65
Using Annotations in Your Application 67
Introducing the Hibernate Annotations 67
Entity Beans with @Entity 68
PrimaryKeyswith@Id 69
Database Table Mapping with @Table and @SecondaryTable 70
Field Persistence with @Basic and @Transient 71
Object-Relational Mapping Details with @Column 71
Modelling Relationships with Annotations 72
Inheritance i 75
Using the Annotated Classes in Your Hibernate Configuration76
Code Listingscooiiri 77

SUMMANY ... 81

PART 2

CHAPTER 5

CHAPTER 6

CONTENTS
Hibernate 3 Reference
The Persistence Lifecycle 85
Introduction to the Lifecycle 85
Saving Objects ... 86
Object Equality and Identity 86
Loading Objectso i 87
Refreshing Objectsco i 89
Updating Objectsc o 89
Deleting Objects ... 90
Cascading Operationscccoiiiiiiiiii i, 91
Querying Objects ... 92
EJB3/JSR 220 Persistence APll 92
SUMMArY ... 92
Creating Mappings ... 93
Hibernate TYypes 93
Entities 93
Componentsoi i 93
Values ... 94
The Anatomy of a Mapping File 95
The Hibernate-Mapping Element 95
TheClassElement i, 97
TheldElement 100
The PropertyElement 102
The Component Elementoiiiiii... 103
The One-to-One Element 104
The Many-to-One Element 106
The Collection Elements 107
Mapping Simple Classesco i, 113
Mapping Composition i 115
Mapping Other Associations 118
Mapping Collections 121
Mapping Inheritance Relationships 123
One Table per Concrete Class 124
OneTable perSubclass, 125

One Table per Class Hierarchy 126

ix

X

CONTENTS

CHAPTER 7

CHAPTER 8

More Exotic Mappings 127
ANy 128
Array ... 128
JOIN Lo 128
Dynamic Component 128

SUMMArY ... 129

Querying Objects with Criteria 131

Using the Criteria Query APl iiiiia... 131
Using Restrictions with Criteria 135
Paging Throughthe ResultSet 138
ObtainingaUnique Result 139
Sorting the Query’sResults 139
Associations 140
DistinctResultsco i 141
Projections and Aggregates, 141
Query By Example (QBE) ..., 143

SUMMANY ... 144

QueryingwithHQLandSQL 145

Hibernate Query Languaget 145

FirstExample with HQL i it 146

Logging the Underlying SQLt 147
Commenting the Generated SQL 148

From Clause and Aliases ...t 148

Select Clause and Projection, 149

Using Restrictionswith HQL 149

Using Named Parameters 150

Paging Throughthe Result Set 151

ObtainingaUnique Resulto.... 152

Sorting Your Results with OrderBy 152

Associations 153
Aggregate Methods 153

Bulk Updates and Deleteswith HQL 154

Named Queriesfor HQLand SQL 155

UsingNative SQL i 157

SUMMANY ... 158

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CONTENTS
Usingthe Session .. 159
SBSSIONS 159
Transactionsand Locking i, 161
Transactions 161
LOCKING ... 163
Deadlockso 164
Caching ... 170
Threads ... 173
SUMMaANY ... 173
Design Considerations with Hibernate 3 175
Application Requirements 175
Designing the ObjectModel 176
Designingthe POJOs i 176
Designing our DAOS ... 180
Mapping with Hibernate 182
Creating the Database Schema 184
The Java Application 186
SUMMANY ... 187
Events and Interceptors 189
Interceptors 189
An Example Interceptor 191
EVentS ... 197
An Example EventListener 199
SUMMANY ... 201
Hibernate Filters ... 203
Whereto UseFilters 203
Defining Filters o i 204
Using Filters in Your Application 205
Basic FilteringExample 205

SUMMArY 211

Xi

Xii

CONTENTS

CHAPTER 13

CHAPTER 14

Fitting Hibernate into the Existing Environment 213
Limitations of Hibernate 213
Hand-Rolled SQLo 214

Usinga Direct Mapping ..., 214

UsingaViewo i 216

Putting SQL intoaMapping 217
Invoking Stored Procedures i 219
Replacing JDBC Calls in Existing Code 221
SUMMaANY ... 222
Upgrading from Hibernate 2 223
Package and DTD Changesccoiiiiiiiion... 223
New Features and SupportforOldOnes 224

Changes and Deprecated Features 225

Additions 226
Changes to Tools and Librariescoiiiiiiint. 226
ChangeswithJavab i il 227
SUMMArY 227

About the Authors

DAVE MINTER is a freelance IT consultant (http://paperstack.com/cv/)
from rainy London, England. His liking for computers was kicked off when
aWang 2200 minicomputer made a big impression on him at the tender
age of six. Since then he has worked for the biggest of blue chips and the
smallest of startups. These days he makes his living designing and build-
ing multi-tier applications that “just work.” Dave is the coauthor with Jeff
of Building Portals with the Java Portlet API (Apress, 2004). He has a com-
puter studies degree from the University of Glamorgan.

JEFF LINWOOD is a software developer and consultant with the Gossamer
Group (http://www.gossamer-group.com/) in sunny Austin, Texas. Jeff has
been in software programming since he had a 286 in high school. He was
caught up with the Internet when he got access to a Unix shell account
and it has been downhill ever since. Jeff coauthored Building Portals with
the Java Portlet API (Apress, 2004) with Dave and Pro Struts Applications
(Apress, 2003), and was a technical reviewer for Enterprise Java Develop-
ment on a Budget (Apress, 2004) and Extreme Programming with Ant
(SAMS, 2003). He has a chemical engineering degree from Carnegie
Mellon University.

xiii

About the Technical Reviewer

DILIP THOMAS is an Open Source enthusiast who keeps a close watch on
LAMP technologies, Open Standards, and the full range of Apache Jakarta
projects. He is coauthor of PHP MySQL Website Programming: Problem -
Design - Solution (Apress, 2003) and a technical reviewer/editor on several
Open Source/Open Standard book projects. Dilip is an Editorial Director
at Software & Support Verlag GmbH.

Dilip resides in Bangalore with his beautiful wife, Indu, and
several hundred books and journals. You can reach him via email at
dilip.thomas@gmail.com.

Xv

Acknowledgments

This book would not have been possible without the energy and enthusiasm of the Apress
staff: especially Steve Anglin for entrusting us with the project in the first place; Beth Christmas,
our Project Manager; Linda Marousek, our Copy Editor; and Katie Stence, our Production
Editor. Thank you all.

We are indebted to Dilip Thomas, our Technical Editor, whose timely and pithy commen-
tary helped us to polish the rough edges of this work. The parts of the book that we are
particularly proud of are usually the direct result of his notes and enquiries.

Dave would like to thank his parents for entrusting the family ZX81 to his clutches some
years past, and his wonderful girlfriend Kalani Seymour for her patience and enthusiasm. He
would also like to thank Jeff Verdegan for his assistance with a particularly tricky example that
makes an appearance in Chapter 13.

Jeff would like to thank his family, Nancy, Judy, Rob, and Beth, for being supportive during
the book-writing process. He'd also like to thank his friends Giuliano, Ronalyn, Roman, Karl,
Michael, Jason, Valerie, Micah, and Betsy.

Where this book fails to achieve its aims, we the authors are, of course, entirely responsible.

Xvii

Introduction

Virtually every application we have worked on has involved a database. While Java and the
JDBC standard have significantly reduced the effort involved in carrying out simple database
operations, the point of contact between the object-oriented world and the relational world
always causes problems.

Hibernate offers a chance to automate most of the hard parts of this particular problem.
By writing a simple XML file, you can make the database look object oriented. Along the way,
you get some performance improvements. You also get an enormous improvement in the ele-
gance of your code.

We were originally skeptical of yet another object-relational system, but Hibernate is
so much easier to work with that we are entirely converted. Neither of us expect to write a
database-based system with JDBC and SQL prepared statements again—Hibernate or its
successors will form an essential part of the foundations. Hibernate is not just “another”
object-relational system, it is the standard to beat.

Speaking of standards, the EJB3 specification has received a lot of input from the Hibernate
team—who have, in turn, made efforts to reflect the emerging standard in their API. There-
fore, to learn good practices for EJB3, start here with Hibernate.

Who This Book Is For

This book is for Java developers who have at least some basic experience with databases and
using JDBC. You will need to have a basic familiarity with SQL and database schemas. While it
is not required, it will certainly be helpful if you have an understanding of the aims of data-
base normalization. We do not assume that you have prior experience with Hibernate or any
other object-relational technology.

Hibernate is an Open Source project, so it is fitting that all of our examples make use of
Open Source technologies. Part of Hibernate’s promise is that many of the details of a particu-
lar relational database are abstracted away, so most of our examples will work with any database
Hibernate supports. When we discuss database features that not all supported databases
have, such as stored procedures, we specifically mention which database we used—both of
our example databases are Open Source and readily available.

This book is not an academic text and does not generally attempt to describe the internal
workings of Hibernate itself. As professional developers, we have tried to impart the under-
standing of how to use Hibernate rather than how to write it!

How This Book Is Organized

This book is roughly divided into two parts, beginning with a primer on the basics of Hiber-
nate in Chapters 1 through 4 and continuing with more technical or design-oriented content
in Chapters 5 through 14.

Xix

XX

INTRODUCTION

We encourage readers who are completely new to this technology to read through the
primer section as this will give you a grounding in the basic requirements for a Hibernate-
based application.

Readers who are familiar with Hibernate 2 should start with Chapter 14, where we discuss
the differences between Hibernate 2 and Hibernate 3, and then refer back to appropriate
chapters:

Chapter 1, An Introduction to Hibernate 3: A basic introduction to the fundamentals of
Hibernate and an overview of some sample code.

Chapter 2, Integrating and Configuring Hibernate: How to integrate Hibernate into
your Java application, an overview of the configuration options for Hibernate, and we
explain how Hibernate deals with the differences between its supported relational
databases.

Chapter 3, Building a Simple Application: Two working-example Hibernate programs in
full with extensive commentary on how the source code, mapping files, and database
are related.

Chapter 4, Using Annotations with Hibernate: How to use the new EJB3 annotations
with Hibernate 3 to create object-relational mappings in your Java source code.

Chapter 5, The Persistence Lifecycle: We explain how Hibernate manages the objects that
represent data in tables, and also present an overview of the relevant methods for creat-
ing, retrieving, updating, and deleting objects through the Hibernate session.

Chapter 6, Creating Mappings: We discuss mapping files in depth. We cover all of the
commonly used elements in detail.

Chapter 7, Querying Objects with Criteria: How to use the Hibernate criteria query API
to selectively retrieve objects from the database.

Chapter 8, Querying with HQL and SQL: This chapter contains a discussion of Hiber-
nate’s object-oriented query language, HQL, and how to use native SQL with Hibernate.

Chapter 9, Using the Session: The ways in which sessions, transactions, locking, caching,
and multi-threading are related. We also present a comprehensive example of a dead-
lock.

Chapter 10, Design Considerations with Hibernate 3: How the Hibernate persistence
layer of an application is designed.

Chapter 11, Events and Interceptors: We discuss these very similar features. Interceptors
were available in Hibernate 2 and are relatively unchanged. Events, while similar to
Interceptors, were introduced with Hibernate 3.

Chapter 12, Hibernate Filters: Hibernate provides filtering functionality for limiting the
data returned by queries to a definable subset. We give an example showing this useful
functionality and explain where you might use it in an application.

INTRODUCTION XXxi

* Chapter 13, Fitting Hibernate into the Existing Environment: We discuss how to go
about integrating Hibernate with legacy applications and databases. We also present
an example of how to invoke a stored procedure.

* Chapter 14, Upgrading from Hibernate 2: For users familiar with Hibernate 2, we dis-
cuss the changes and additions in Hibernate 3.

PART 1

Hibernate 3 Primer

CHAPTER 1

An Introduction to
Hibernate 3

M ost significant development projects involve a relational database. The mainstay of most
commercial applications is the large-scale storage of ordered information, such as catalogs,
customer lists, contract details, published text, and architectural designs.

With the advent of the World Wide Web, the demand for databases has increased. Though
they may not know it, the customers of online bookshops and newspapers are using data-
bases. Somewhere in the guts of the application a database is being queried and a response
is offered.

While the demand for such applications has grown, their creation has not become notice-
ably simpler. Some standardization has occurred—the most successful being the Enterprise
JavaBeans (EJBs) standard of Java 2 Enterprise Edition (J2EE), which provides for container
and bean-managed persistence of Entity Bean classes. Unfortunately, this and other persist-
ence models all suffer to one degree or another from the mismatch between the relational
model and the object-oriented model. In short, database persistence is difficult.

There are solutions for which EJBs are more appropriate, for which some sort of Object
Relational Mapping (ORM) like Hibernate is appropriate, and some for which the traditional
connected' approach of direct access via the JDBC API is most appropriate. Making the call on
which to use requires an intimate knowledge of the strengths and weaknesses of them all—
but all else being equal, we think that Hibernate offers compelling advantages in terms of ease
of use.

To illustrate some of Hibernate’s other strengths, in this chapter we will show you a “Hello
World” Java database example. This application allows previously stored messages to be dis-
played using a simple key such as the “Message of the day.” We will show the essential
implementation details using the connected approach and using Hibernate.

Both of our examples are invoked from the main method in Listing 1-1, with the point at
which we invoke the specific implementation marked in bold.

1. There is no standard way of referring to “direct use of JDBC” as opposed to ORM or E]Bs, so we have
adopted the term “connected” as the least awkward way of expressing this.

CHAPTER 1 =" AN INTRODUCTION TO HIBERNATE 3

Listing 1-1. The Main Method That Will Invoke Our Hibernate and Connected Implementations

public static void main(String[] args) {
if (args.length I= 1) {
System.err.println("Nope, enter one message number");
} else {
try {
int messageld = Integer.parseInt(args[0]);
Motd motd = getMotd(messageld);
if (motd != null) {
System.out.println(motd.getMessage());
} else {
System.out.println("No such message");

}
} catch (NumberFormatException e) {
System.err.println("You must enter an integer - " + args[o]

+ " won't do.");
} catch (MotdException e) {
System.err.println("Couldn't get the message:

}

n

+e);

Plain Old Java Objects (P0JOs)

In our ideal world, it would be trivial to take any Java object and persist it to the database. No
special coding would be required to achieve this, no performance penalty would ensue, and
the result would be totally portable. The common term for the direct persistence of traditional
Java objects is Object Relational Mapping. There is a direct and simple correspondence
between the POJOs?, something that the forthcoming changes in the EJB3 standard look set

to emulate.

Where Entity Beans have to follow a myriad of awkward naming conventions, POJOs can
be any Java object at all. Hibernate allows you to persist POJOs, with very few constraints.
Listing 1-2 is an example of a simple POJO to represent our “Message of the day” (Motd)
announcement.

Listing 1-2. The POJO That We Are Using in This Chapter’s Examples

public class Motd {
protected Motd() {
}

2. Java objects requiring no special treatment to be stored are often referred to as Plain Old Java Objects,
or POJOs for short. This is really just to provide a handy term to differentiate them from Entity Beans
and the like, which must conform to complicated and limiting contracts. The name also conveys
something of the benefits of Hibernate—you don’t have to do anything special to support persistence
of a POJO via Hibernate, so you really can reuse your existing Java objects.

CHAPTER 1

public Motd(int messageld, String message) {
this.messageld = messageld;
this.message = message;

}

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;
}

public String getMessage() {
return message;

}

public void setMessage(String message) {
this.message = message;

}

private int messageld;
private String message;

AN INTRODUCTION TO HIBERNATE 3

What sort of POJO can be persisted? Practically anything. It has to provide a default con-

Origins of Hibernate and Object
Relational Mapping

Listing 1-3. The Connected Approach to Retrieving the POJO

structor (but this can be given package or private scope to avoid pollution of your API), but
that’s it. Not an especially onerous burden.

If Hibernate is the solution, what was the problem? The gargantuan body of code in Listing 1-3
is required to populate our example Motd object from the database even when we know the
appropriate message identifier:

public static Motd getMotd(int messageId) throws MotdException {

Connection c = null;
PreparedStatement p = null;
Motd message = null;

try {

Class.forName("org.postgresql.Driver");
¢ = DriverManager.getConnection(

6

CHAPTER 1 =" AN INTRODUCTION TO HIBERNATE 3

}

"jdbc:postgresql://127.0.0.1/hibernate",
"hibernate",
"hibernate");
p = c.prepareStatement(
"select message from motd where id = ?");

p.setInt(1, messageld);
ResultSet rs = p.executeQuery();

if (rs.next())
String text = rs.getString(1);
message = new Motd(messageld, text);

{

if (rs.next()) {
log.warning(
"Multiple messages retrieved for message ID:
+ messageld);

n

}

} catch (Exception e) {
log.log(Level.SEVERE, "Could not acquire message", e);
throw new MotdException(
"Failed to retrieve message from the database.", e);
} finally {
if (p != null) {
try {
p.close();
} catch (SQLException e) {
log.log(Level .WARNING,
"Could not close ostensibly open statement.", e);

}
}
if (c != null) {
try {
c.close();

} catch (SQLException e) {
log.log(Level.WARNING,
"Could not close ostensibly open connection.”, e);

}

return message;

CHAPTER 1 =" AN INTRODUCTION TO HIBERNATE 3

While some of this can be trimmed down—for example, the acquisition of a connection is
more likely to be done in a single line from a DataSource—there is still a lot of boilerplate code
here. Entering this manually is tedious and error prone.

EJBs As a Persistence Solution

So why not just use EJBs to retrieve data? Entity Beans are, after all, designed to represent,
store, and retrieve data in the database.

Strictly speaking, an Entity Bean is permitted two types of persistence in an EJB server:
Bean-Managed Persistence (BMP) and Container-Managed Persistence (CMP). In BMP, the
bean itself is responsible for carrying out all of the Structured Query Language (SQL) associ-
ated with storing and retrieving its data—in other words, it requires the author to create the
appropriate JDBC logic complete with all the boilerplate in Listing 1-3. CMP, on the other
hand, requires the container to carry out the work of storing and retrieving the bean data.
So why doesn’t that solve the problem? Here are just a few of the reasons:

* CMP Entity Beans require a one-to-one mapping to database tables.
e They are (by reputation at least) slow.
e Someone has to determine which bean field maps to which table column.

¢ They require special method names. If these are not followed correctly, they will fail
silently.

» Entity Beans have to reside within a J2EE application server environment—they are a
heavyweight solution.

* They cannot readily be extracted as “general purpose” components for other applica-
tions.

e They can't be serializable.

e They rarely exist as portable components to be dropped into a foreign application—you
generally have to roll your own EJB solution.

Hibernate As a Persistence Solution

Hibernate addresses a lot of these points, or alleviates some of the pain where it can’t, so we’ll
address the points in turn.

Hibernate does not require you to map one POJO to one table. A POJO can be constructed
out of a selection of table columns, or several POJOs can be persisted into a single table.

Though there is some performance overhead while Hibernate starts up and processes its
configuration files, it is generally perceived as being a fast tool. This is very hard to quantify,
and, to some extent, the poor reputation of Entity Beans may have been earned more from the
mistakes of those designing and deploying such applications than on its own merits. As with
all performance questions, you should carry out tests rather than rely on anecdotal evidence.

CHAPTER 1 =" AN INTRODUCTION TO HIBERNATE 3

In Hibernate it is possible, but not necessary, to specify the mappings at deployment
time. The EJB solution ensures portability of applications across environments, but the Hiber-
nate approach tends to reduce the pain of deploying an application to a new environment.

Hibernate persistence has no requirement for a J2EE application server or any other spe-
cial environment. It is, therefore, a much more suitable solution for stand-alone applications,
for client-side application storage, and other environments where a J2EE server is not imme-
diately available.

Hibernate uses POJOs that can very easily and naturally be generalized for use in other
applications. There is no direct dependency upon the Hibernate libraries so the POJO can be
put to any use that does not require persistence—or can be persisted using any other POJO
“friendly” mechanism.

Hibernate presents no problems when handling serializable POJOs.

Finally, there is a very large body of preexisting code. Any Java object capable of being
persisted to a database is a candidate for Hibernate persistence. Therefore, Hibernate is an
excellent solution to choose when adding a standard persistence layer to an application that
uses an ad hoc solution, or which has not yet had database persistence incorporated into it.
Furthermore, by selecting Hibernate persistence, you are not tying yourself to any particular
design decisions for the business objects in your application.

A Hibernate Hello World Example

Listing 1-4 shows how much less boilerplate is required with Hibernate than with the con-
nected approach in Listing 1-3.

Listing 1-4. The Hibernate Approach to Retrieving Our POJO

public static Motd getMotd(int messageId)
throws MotdException
{
SessionFactory sessions =
new Configuration().configure().buildSessionFactory();
Session session = sessions.openSession();
Transaction tx = null;

try {
tx = session.beginTransaction();

Motd motd =
(Motd)session.get(Motd.class,
new Integer(messageld));

tx.commit();
tx = null;
return motd;
} catch (HibernateException e) {

CHAPTER 1 =" AN INTRODUCTION TO HIBERNATE 3

if (tx != null) tx.rollback();
log.log(Level.SEVERE, "Could not acquire message", e);
throw new MotdException(
"Failed to retrieve message from the database.",e);
} finally {
session.close();
}
}

Even for this trivial example there would be a further reduction in the amount of code
required in a real deployment—particularly in an application-server environment. The
SessionFactory would normally be created elsewhere and made available to the application
as a Java Native Directory Interface (JNDI) resource. It is particularly interesting that because
this object is keyed on its identifier, we can carry out all of the SQL of Listing 1-4, along with
the population of the object from the result set using the single line

Motd motd = (Motd)session.get(Motd.class, new Integer(messageld));

When more complex queries that do not directly involve the primary key are required,
some SQL (or rather, HQL [the Hibernate Query Language]) is required, but the work of popu-
lating objects is permanently eradicated.

Some of the additional code in our Hibernate 3 example actually provides functionality
(transactionality and caching) beyond that of the connected example. In addition, we have
greatly reduced the amount of error-handling logic required.

Mappings

Of course there is more to it than this—Hibernate needs something to tell it which tables relate
to which objects (the information is actually provided in an XML-mapping file). But while some
tools inflict vast, poorly documented XML configuration files on their users, Hibernate offers a
breath of fresh air; you create and associate a small, clear mapping file with each of the POJOs
that you wish to map into the database. You're permitted to use a single monolithic configura-
tion file if you prefer, but it’s neither compulsory nor encouraged.

A Document Type Definition (DTD) is provided for all Hibernate’s configuration files, so
with a good XML editor you should be able to take advantage of autocompletion and autovali-
dation of the files as you create them. A number of tools allow the automated creation of the
mapping files, and Java 5 annotations can be used to replace them entirely.

Listing 1-5 shows the file mapping our Motd POJO into the database.

Listing 1-56. The XML File Mapping Our POJO to the Database

<?xml version="1.0"?>

<IDOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

10

CHAPTER 1 =" AN INTRODUCTION TO HIBERNATE 3

<hibernate-mapping>
<class name="Motd" table="Motd">
<id name="id" type="int" column="id">
<generator class="native"/>
</id>
<property name="message" column="message" type="string"/>
</class>
</hibernate-mapping>

It would be reasonable to ask if the complexity has simply been moved from the applica-
tion code into the XML-mapping file. But, in fact, this isn’t really the case for several reasons.

First, the XML file is much easier to edit than a complex population of a POJO from a
result set.

Second, we have still done away with the complicated error handling that was required
with the connected approach. This is probably the weakest reason, however, since there are
various techniques to minimize this without resorting to Hibernate.

Third, finally, and most importantly, if the POJO provides bean-like property access meth-
ods and a default constructor, then tools provided with Hibernate allow the direct generation
of a mapping file. We will discuss the use of these tools in depth in Chapter 10.

Database Generation

If you are creating a new Hibernate application around an existing database, creating the
database schema is not an issue; it is presented to you on a platter. If you are starting a new
application, you will need to create the schema, the POJOs, and the mapping directly.

Yet again, there is a tool to make life easy for you. The SchemaExport tool allows a database
schema to be generated for your database directly from the mapping file. This is even better
than it sounds! Hibernate comes with intimate knowledge of various different dialects of SQL,
so the schema will be tailored to your particular database software—or can be generated for
each different database to which you want to deploy your application.

The generation of a SQL script to create your database schema is similar to the generation
of the mapping file from the POJO:

java org.hibernate.tool.hbm2ddl.SchemaExport Motd.hbm.xml

Bootstrapping Your Configuration

You've probably now realized one of the things we really like about Hibernate—if you have any
one of the three things you need (POJOs, schema, mapping), you can generate the other two
without having to write them from scratch.

Figure 1-1 shows the various ways in which files and databases can be created:

Motd. java zotd.class Mgtd.hbm.xml
Motd.hbm.xml :btd.java Qotd.class
Motd.hbm.xml ;Motd.sql

Motd.sql ;Database

Database M:td.hbm.xml

CHAPTER 1

Figure 1-1. Automated creation of files in Hibernate

AN INTRODUCTION TO HIBERNATE 3

from which a simplified set of the relationships makes it clear that we can get from any one
file the other two essentials (see Figure 1-2).

¥
Motd.java

Motd.hbm.xml

VAWAN

Figure 1-2. Mutual creation of files in Hibernate

Motd.sql

N

Once we have the SQL and Java files, we can generate the database and class files in the
conventional manner. In practice, if you have a complicated schema or a complicated set of
POJOs, you will always need to make changes from the default options produced by these
simple tools. But even so, this takes a lot of the legwork out of the process.

If you are creating your application from scratch, you will probably want to drive the cre-
ation of POJOs from your mapping file, or take advantage of other tools that will allow you to
specify the minutiae of each POJO’s relationship with other classes inside the class definition

itself.

11

12

CHAPTER 1 =" AN INTRODUCTION TO HIBERNATE 3

The Relationship of Hibernate 3 with EJB3

The current version of the EJB standard does not provide an ORM mechanism. However, this
will change. The forthcoming standard for the next (3.0) incarnation of EJB is being developed
as Java Specification Request (JSR) 220, and will include an EJB ORM standard. Why learn
Hibernate when a new standard blessed by Sun is to be released? Because the original devel-
opers of Hibernate are closely involved in the creation of the standard and as one of the most
successful ORM solutions, Hibernate has heavily influenced the design of EJB3.

EJB3 supports and encourages the use of transparent persistence of Entity Beans, which
conform to the same minimal set of requirements as the POJOs supported by Hibernate. As a
result of this, Hibernate can be used as the implementation of the EntityManager component
of an EJB container.

Hibernate’s HQL also has a strong correlation with the new EJB Query Language (EJB QL),
though this is probably as much an artifact of their common ancestry in SQL as the Hibernate
team’s participation in the standards effort.

EJB3 allows the relationship between Entities/POJOs and the database to be described
with a deployment descriptor. Although, at the time of writing, this has not been fully speci-
fied, it looks likely to resemble the Hibernate mapping files in both form and purpose. Even
more interesting, EJB3 will also allow this relationship to be expressed as Java 5 annotations
inline with the Entity/POJO’s source code. This is directly supported by Hibernate 3 annota-
tions. The convenience of this approach suggests that it will become the standard way to
maintain these mappings as Java 5 deployments become commonplace.

In short, if you code to Hibernate 3 now, the effort involved in the transition to EJB3 later
will be minimal if at all necessary. Meanwhile, Hibernate 3 is available now and has a persua-
sive pedigree.

Summary

In this chapter we have considered the problems and requirements that have driven the devel-
opment of Hibernate. We have looked at some of the details of a trivial example application
written with and without the aid of Hibernate. While we have glossed over some of the imple-
mentation details, we will discuss these in depth in Chapter 3. We have also discussed some of
the tools that can accelerate your initial steps in creating a Hibernate project.

In the next chapter, we will look at the architecture of Hibernate and how it is integrated
into your applications.

CHAPTER 2

Integrating and Configuring
Hibernate

Compared to other Java persistence solutions, integrating Hibernate into a Java application
is easy. The designers of Hibernate avoided some of the more common pitfalls and problems
with the existing Java persistence solutions, and created a clean but powerful architecture.

In practice, this means that you do not have to run Hibernate inside any particular J2EE con-
tainer or framework—Hibernate 3 only requires Java 2 Standard Edition (J2SE) version 1.2 or
later, although the new annotations feature requires J2SE 5.0 (or later).

If you already have an application that uses Hibernate 2, the migration path is easy from
Hibernate 2 to Hibernate 3. Hibernate 3 is not completely backwards-compatible, but most of
the changes are additional features that you can integrate into your existing application as you
see fit. The Hibernate developers provided implementations of the core Hibernate 2 objects in
Hibernate 3 with the Hibernate 2 methods for backwards compatibility. We cover the changes
between Hibernate 2 and Hibernate 3 in more depth in Chapter 14.

One of the key features of Hibernate’s design is the principle of least intrusiveness—the
Hibernate developers did not want Hibernate to intrude into your application more than
was necessary. This leads into several of the architectural decisions made for Hibernate. In
Chapter 1, we discussed the problem Hibernate solves, and how your application’s business
objects map to a relational database. In this chapter, we explain how Hibernate integrates
with your Java application, how to configure Hibernate, and how to set up a database
connection pool for Hibernate.

Integrating Hibernate with Your Java Application

You can call Hibernate from your Java application directly, or you can access Hibernate
through another framework. Hibernate supports the Java Management Extensions (JMX),
Java Connector Architecture (JCA), and Java Naming and Directory Interface (JNDI) standards.
Using JMX, you can configure Hibernate while it is running. Hibernate may be deployed as a
JCA connector, and you can use JNDI to obtain a Hibernate session factory in your applica-
tion. In addition, Hibernate uses standard Java Database Connectivity (JDBC) database
drivers to access the relational database. Hibernate does not replace JDBC as a database con-
nectivity layer—Hibernate sits on a level above JDBC.

In addition to the standard Java APIs, many Java web and application frameworks now
integrate with Hibernate. Hibernate’s simple, clean API makes it simple for these frameworks
to support Hibernate in one way or another. The Spring framework provides excellent

13

14

CHAPTER 2 ©" INTEGRATING AND CONFIGURING HIBERNATE

Hibernate integration, including generic support for persistence objects, a generic set of per-
sistence exceptions, and transaction management. You will need to get started with Spring’s
HibernateTemplate class. Spring is outside the scope of this Hibernate book, although it comes
recommended by both of us. For more about Spring, see Pro Spring by Rob Harrop and Jan
Machacek (Apress, 2005) or go to the website http://www.springframework.org/.

No matter how you access Hibernate, you will need to create a Hibernate configuration,
and then build a Hibernate session factory from the configuration. Once you have a session
factory, your application asks the factory for a session. Your application will use Hibernate
sessions to manage the persistent objects. In the next section, we discuss how to use the
Configuration class to provide all of the settings for your Java application’s Hibernate
instance.

Deploying Hibernate
To integrate Hibernate with your Java application, you will need to use several Java libraries.
The first library is the Java Archive (. jar) file for your JDBC driver, which you will need to find
for your specific relational database. The JDBC driver requirements come from the database-
specific classes in Hibernate called dialects. These dialects define the SQL variant and the
specific database features to use for each vendor’s database. We discuss dialects in more detail
further on in the chapter. The Hibernate website contains a platform-specific FAQ that offers
solutions to several database-specific questions.

If you need Hibernate to work with older JDBC versions, be sure to disable two JDBC 2
specific features: batch update and scrollable result sets. Use the following configuration val-
ues for Hibernate (we discuss configuration later in this chapter):

hibernate.jdbc.batch size=0
hibernate.jdbc.use scrollable resultsets=false

After you configure the JDBC driver, the next step is to deploy hibernate3.jar with your
application, which comes with the Hibernate 3 binary distribution. The hibernate3. jar file
contains the org.hibernate classes, along with several DTD and XML schema files. Inside
the 1ib directory of the Hibernate 3 distribution, you will find many different Java archives,
some of which are required for running Hibernate 3, and some of which are only required for
optional functionality. After you deploy all of the libraries with your application, you will need
to create a configuration file for your application.

Required Libraries for Running Hibernate 3

Hibernate requires several libraries beyond hibernate3.jar. These libraries are included in
the 1ib directory of your Hibernate 3 installation. The up-to-date list of libraries shipped with
Hibernate 3 is in the 1ib/README. txt file in the Hibernate distribution.

There are several optional libraries included with the Hibernate 3 distribution. If you
build Hibernate from source, a few of these are necessary for Hibernate to compile. Other
libraries provide connection pools, additional caching functionality (the Session cache is
mandatory), and the JCA APL

CHAPTER 2 " INTEGRATING AND CONFIGURING HIBERNATE

Enterprise JavaBeans 3

The Enterprise JavaBeans 3 (EJB3) specification was available in early release form when we
wrote this book. Although Hibernate’s design influenced many of the changes (lightweight
persistence and the query language) in EJB3, Hibernate is not a full implementation of EJB3.
Your EJB3 container may use Hibernate as its persistence service for object-relational map-
ping (ORM), and if it does, you may be able to access the Hibernate session factory through a
JNDI lookup or another mechanism.

If you have used EJB 1.x or 2.x in the past, EJB3 should be a much-needed simplification.
We strongly suggest using Hibernate instead of EJB3 if all you need is a persistence solution—
Hibernate does not require a specific application server or container. Unfortunately, we have
seen too many uses of EJB as just an ORM layer, instead of either taking advantage of EJB’s
transaction and distributed application capabilities or using a lighter-weight ORM solution
such as Hibernate.

Hibernate 3’s annotations are compatible with the proposed EJB3 annotations, although
there are Hibernate-specific extensions. In Chapter 4, we discuss how to use the new annota-
tions and metadata features of Hibernate 3.

Java Management Extensions (JMX) and Hibernate

Java Management Extensions is a standard API for managing Java applications and compo-
nents.

Hibernate provides two MBeans for JMX: HibernateServiceMBean and StatisticsServicew
MBean. Both of these are interfaces that reside in the org.hibernate. jmx package. The
HibernateService and StatisticsService classes in the same package implement the inter-
faces. The HibernateServiceMBean provides getter and setter methods for many of the
Hibernate configuration properties, including the data source, transaction strategy, caching,
dialect, and other database settings. It also provides a mechanism for adding mapping files
to the configuration. An administrator could use a JMX management console to change the
Hibernate configuration. When the HibernateServiceMBean starts, the MBean will create a
Configuration object from its properties and mapping files, and then build a SessionFactory
object. The SessionFactory object binds to the JNDI location specified on the JMX MBean, and
your Java application can use standard JNDI calls to get that session factory.

The other MBean is for statistics. Hibernate can log statistics about the performance of
query execution, caching, and object entity operations. Using a JMX console, an administrator
can enable statistics and then view up-to-date performance indicators through the console.

The advantage of JMX here is that administrators or other nondevelopers may change
properties at runtime with a standardized JMX console that they are already familiar with.
JMX also has a loose coupling advantage—your application does not have to worry about con-
figuring Hibernate because JMX is responsible.

If you are not familiar with JMX, the Open Source JBoss application server uses JMX to
manage its internal components. You can manage Hibernate or another MBean through JBoss’s
administration console.

15

16

CHAPTER 2 ©" INTEGRATING AND CONFIGURING HIBERNATE

Hibernate Configuration

Before you create a session factory, you will need to tell Hibernate where to find the mapping
files that define how a Java class maps to a database table. Hibernate also uses a set of configu-
ration settings, which are usually either in a standard Java properties file called hibernate.
properties or an XML file named hibernate.cfg.xml. You may use either the XML or the Java
properties file for configuration. We recommend using the XML format, because it has sup-
port for configuring your mapping files. If you use hibernate.properties, you will have to
configure your mappings in Java with the org.hibernate.cfg.Configuration class. Create

an instance of the Configuration class to set the properties and mapping files for your
SessionFactory. There is only one public constructor for Configuration, the default
constructor.

Internally, Hibernate uses a somewhat confusing set of classes in the org.hibernate.cfg
package to configure itself. Although you should be aware of what these classes do for the
Configuration class, you will typically only interact with the Configuration class directly. The
Configuration constructor creates a new instance of the org.hibernate.cfg.SettingsFactory
class for use in the Configuration.

The settings factory creates a new instance of org.hibernate.cfg.Settings out of the
Hibernate configuration properties. These properties could be in a hibernate.properties file
located in the root of the classpath or the Java system properties.

The buildSessionFactory() method on the Configuration class creates an instance of the
SessionFactory:

public SessionFactory buildSessionFactory() throws HibernateException

The SessionFactory is a heavyweight object, and your application should use one Hiber-
nate SessionFactory object for each database it interacts with. The SessionFactory relies on
the configuration properties, which we discuss in the next section of this chapter.

After you obtain the SessionFactory, you can retrieve Hibernate org.hibernate.Session
objects. These Session objects are lightweight, as opposed to the SessionFactory object. You
perform your persistence operations with the Session object. In Chapter 3, we present an
example that walks you through a simple application that uses Hibernate for data persistence.

Hibernate Properties

Typically, you will specify your Hibernate configuration in a properties file called
hibernate.properties in the root directory of your application’s classpath. Hibernate has

an extensive list of properties for configuration (see Table 2-1)—not all of them are required,
of course, because of sensible defaults. You will need to configure a JDBC connection here,
provide one programmatically in your application, or specify the JNDI name of a container-
provided JDBC connection. You should also configure the SQL dialect specific to your
deployment database that Hibernate should use to generate SQL. We discuss SQL dialects in
more detail later in the chapter.

CHAPTER 2

INTEGRATING AND CONFIGURING HIBERNATE

Table 2-1. Hibernate Configuration Property Names and Descriptions

Property Name

Description

hibernate.connection

hibernate.connection.

hibernate.connection.

hibernate.connection.
hibernate.connection.
hibernate.connection.
hibernate.connection.

hibernate.connection.

hibernate.connection.

hibernate.connection.

hibernate.jndi.class

hibernate.jndi.url

.provider class

driver class

isolation

url
username
password
autocommit

pool size
datasource

<JIDBCpropertyname>

hibernate.jndi.<JNDIpropertyname>

hibernate.session factory name

hibernate.dialect

hibernate.default schema

hibernate.default catalog

hibernate.show_sql

hibernate.use sql comments

hibernate.max_fetch depth

hibernate.jdbc.use _streams for binary

Class that implements Hibernate’s
ConnectionProvider interface.

The JDBC driver class.

The transaction isolation level for the JDBC
connection.

The JDBC URL to the database instance.
Database username.

Database password.

Uses autocommit for the JDBC connection.

Limits the number of connections waiting in
the Hibernate database connection pool.

Datasource name for a container-managed
data source.

Passes any JDBC property you would like to
the JDBC connection—for instance,
hibernate.connection.debuglevel=info
would pass a JDBC property called
debuglevel.

Initial context class for JNDI.
Provides URL for JNDI.

Passes any JNDI property you would like to
the JNDI InitialContext.

If this property is set, the Hibernate session
factory will bind to this JNDI name.

SQL dialect to use for Hibernate, varies by
database. See section on SQL dialects.

Default database owner name that Hibernate
uses to generate SQL for unqualified table
names.

Default database catalog name that Hibernate
uses to generate SQL for unqualified table
names.

Logs the generated SQL commands.
Generates SQL with comments.

Determines how deep Hibernate will go to
fetch the results of an outer join. Used by
Hibernate’s outer join loader.

Determines if binary data is read or written
over JDBC as streams.

Continued

17

18

CHAPTER 2 ©" INTEGRATING AND CONFIGURING HIBERNATE

Table 2-1. Continued

Property Name

Description

hibernate.jdbc.use _scrollable resultset

hibernate.jdbc.use get generated keys

hibernate.jdbc.fetch size

hibernate.jdbc.batch size

hibernate.jdbc.factory class

hibernate.jdbc.batch versioned data

hibernate.xml.output stylesheet
hibernate.c3p0.max_size
hibernate.c3p0.min _size

hibernate.c3p0.timeout

hibernate.c3p0.max_statements

hibernate.c3p0.acquire_increment

hibernate.c3p0.idle test period
hibernate.proxool

hibernate.proxool.xml
hibernate.proxool.properties
hibernate.proxool.existing pool

hibernate.proxool.pool alias

hibernate.transaction.auto close session

Determines if Hibernate will use JDBC
scrollable resultsets for a user-provided
JDBC connection.

If the database driver supports the JDBC 3
autogenerated keys API, Hibernate will
retrieve any generated keys from the
statement after it executes a SQL query.

Determines how many rows the JDBC

connection will try and buffer with every
fetch. This is a balance between memory
and minimizing database network traffic.

The maximum batch size for updates.

The class name of a custom implementation
of the org.hibernate. jdbc.Batcher interface
for controlling JDBC prepared statements.

Determines if Hibernate batches versioned
data, which will depend on your JDBC driver
properly implementing row counts for batch
updates. Hibernate uses the row count to
determine if the update was successful.

Specifies an XSLT stylesheet for Hibernate’s
XML data binder. Requires xalan. jar.

Maximum size of the connection pool for
C3PO.

Minimum size of the connection pool for
C3PO.

Timeout for C3PO (in seconds).

Upper limit for the SQL statement cache for
C3PO.

After connection pool is completely utilized,
determines how many new connections are
added to the pool.

Determines how long to wait before a
connection is validated.

Prefix for the Proxool database connection
pool.

Path to a Proxool XML configuration file.
Path to a Proxool properties file.
Configures Proxool with an existing pool.

Alias to use for any of the above configured
Proxool pools.

Closes session automatically after a
transaction.

CHAPTER 2

INTEGRATING AND CONFIGURING HIBERNATE

Property Name

Description

hibernate.transaction.flush before completion

hibernate.transaction.factory class

hibernate.transaction.manager lookup_class

jta.UserTransaction

hibernate.cache.provider class

hibernate.cache.use_query cache

hibernate.cache.query cache factory

hibernate.cache.use_second_level cache
hibernate.cache.use_minimal_puts

hibernate.cache.region prefix
hibernate.generate statistics

hibernate.use identifier rollback

hibernate.cglib.use reflection optimizer

hibernate.query.factory class

hibernate.query.substitutions

hibernate.hbm2ddl.auto

hibernate.sql_exception_converter
hibernate.wrap result sets

hibernate.order updates

Automatically flushes before completion.

Specifies a class that implements the
org.hibernate.transaction.
TransactionFactory interface.

Specifies a class that implements the
org.hibernate.transaction.
TransactionManagerLookup interface.

The JNDI name for the UserTransaction
object.

Specifies a class that implements the
org.hibernate.cache.CacheProvider
interface.

Specifies whether or not to use the query
cache.

Specifies a class that implements the
org.hibernate.cache.QueryCacheFactory
interface for getting QueryCache objects.

Determines whether or not to use the
Hibernate second level cache.

Configures the cache to favor minimal puts
over minimal gets.

The prefix to use for the name of the cache.
Determines whether statistics are collected.

Determines whether Hibernate uses identifier
rollback.

Instead of using slower standard Java
reflection, uses the CGLib code generation
library to optimize access to business object
properties. Slower at startup if this is enabled,
but faster runtime performance.

Specifies an HQL query factory class name.

Any possible SQL token substitutions
Hibernate should use.

Automatically creates, updates, or drops
database schema on startup and shut down.
There are three possible values: create, create-
drop, and update. Be careful with create-drop!

Specifies which SQLExceptionConverter to use
to convert SQLExceptions into JDBCExceptions.

Turns on JDBC result set wrapping with
column names.

Order SQL update statements by each
primary key.

19

20

CHAPTER 2 ©" INTEGRATING AND CONFIGURING HIBERNATE

XML Configuration

As we discussed previously, Hibernate offers XML configuration capabilities. The advantage of
using the XML configuration is that the XML configuration file provides the ability to configure
your Hibernate mapping files. Similar to hibernate.properties, create an XML configuration
file called hibernate.cfg.xml and place it in the root of your application’s classpath. The XML
configuration file needs to conform to the Hibernate 3 Configuration DTD, which is available
from http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd.

Listing 2-1 is an example XML configuration for Hibernate.

Listing 2-1. An XML Configuration for Hibernate

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE hibernate-configuration SYSTEM w»
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
<session-factory>
<property name="dialect">org.hibernate.dialect.HSQLDialect</property>
<mapping jar="hibernate-mappings.jar"/>
<mapping resource="com/apress/hibernate/User.hbm.xml"/>
</session-factory>
</hibernate-configuration>

In addition to specifying the properties listed in Table 2-1 to configure a session factory,
you can also configure mapping files, caching, listeners, and the JNDI name for the session
factory in the XML configuration. When you use the XML configuration file, you do not need
to use the hibernate prefix for properties, as illustrated in Listing 2-1, with the dialect prop-
erty. We discuss mapping file configuration in the next section, and caching in Chapter 9.

If you are already using hibernate.properties, hibernate.cfg.xml will override any set-
tings in hibernate.properties.

After placing your XML configuration file in the root directory of the classpath, you will
need to call one of the configure() methods on your application’s Configuration object. With
the default file name (hibernate.cfg.xml), you can call configure() with no arguments. If you
used a different file name (for instance, because you have production, staging, user accept-
ance test, and development environments, with different databases), use one of the following
methods on a Configuration object:

e public Configuration configure(String) throws HibernateException: Loads the XML
configuration from a resource accessible by the current thread’s context class loader.

e public Configuration configure(URL) throws HibernateException: Retrieves the XML
configuration from a valid URL.

* public Configuration configure(File) throws HibernateException: Uses an XML con-
figuration file on the file system.

CHAPTER 2 " INTEGRATING AND CONFIGURING HIBERNATE

Mapping Documents

After you create your mapping documents for Hibernate, Hibernate needs to know where to
find them. Before you create the session factory, add them to your Configuration object, or
specify them in the hibernate.cfg.xml XML configuration file. For more about Hibernate’s
mappings, see Chapter 6.

If you choose to add the mapping documents directly to an instance of Configuration,
use one of the following methods:

e addFile(String): Uses the path to an XML mapping document for Hibernate. An
example of this would be com/hibernatebook/config/Example.hbm.xml.

e addFile(File): Uses a File object that represents an XML mapping document.

¢ addClass(Class): Translates a Java class name into a file name, which Hibernate then
loads as an input stream from the Java class’s class loader; for example, Hibernate
would look for the file called com/hibernatebook/config/Example.hbm.xml for a class
named com.hibernatebook.config.Example.

e addJar(File): Adds any mapping documents (*.hbm.xml) in the specified . jar file to
the Configuration object.

e addDirectory(File): Adds any mapping documents (*.hbm.xml) in the specified direc-
tory to the Configuration object.

The following methods also add mapping documents to the Configuration object,
although you are less likely to use them unless you have specialized application deployment
issues:

e addXML(String): Takes a String object that contains the Hibernate mapping XML.
¢ addURL(URL): Requires a valid URL to the Hibernate mapping XML.

e addCacheableFile(File): Saves time when Hibernate loads XML mapping files at
startup by caching XML mapping documents on the file system as serialized DOM
Document objects. This improves performance after the first load. Takes a File object
that points to the XML mapping document, not the .bin cache file.

e addCacheableFile(String): Same as addCacheableFile(File), except this method takes
a path to the file. Hibernate constructs a File object out of the path and then passes it
to addCacheableFile(File).

e addDocument (Document): Takes a valid DOM Document object with the XML.

The addJar() and addDirectory() methods are the most convenient, because you can
load all of your Hibernate mapping documents at one time. Both of these methods also sim-
plify code configuration, layout, and refactoring, because you will not have to maintain code
that adds each document separately. We find that it is easy to create a mapping document and
then forget to add it to your application’s Hibernate initialization code, so both of these meth-
ods are handy.

21

22

CHAPTER 2 "' INTEGRATING AND CONFIGURING HIBERNATE

Although specifying mapping documents directly in the code is one approach, another is
to use the <mapping> element in the hibernate.cfg.xml XML configuration file. The <mapping>
element has three possible attributes: jar, resource, and file, which map to the addJar(),
addResource(), and addFile() methods on the Configuration object:

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE hibernate-configuration SYSTEM w»
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
<session-factory>
<mapping jar="hibernate-mappings.jar"/>
<mapping resource="com/apress/hibernate/User.hbm.xml"/>
</session-factory>
</hibernate-configuration>

Whether you use the XML configuration file or directly specify the mapping files in code is
up to you—we suggest you use whichever you are less likely to forget to do.

Naming Strategy

If your project has an existing standard for naming database tables or columns, or you would
like to specify exactly how Hibernate maps Java class names to database table names, you can
use Hibernate’s naming strategy functionality. Custom naming strategies specify how Hiber-
nate maps Java class names to database table names, properties to column names, and the
name of a table used to hold a collection of properties for a Java class. A naming strategy may
also alter the table names and column names specified in the Hibernate mapping docu-
ments—use this for adding a consistent application-wide prefix to table names, for instance.

Although you could specify the names of all of the tables and columns in the mapping
document, if you have clear and consistent rules for naming already, you will save a lot of time
and frustration with a custom naming strategy. If you decide later to add a prefix to all data-
base table names, it is easy to do with a naming strategy, but difficult to maintain and keep
going forward in every Hibernate mapping document.

Note Using Hibernate with an existing database often means creating a custom naming strategy for
Hibernate. If the database tables have a prefix, it may be cleaner to implement a naming strategy that adds
that prefix, instead of specifying the full table name with a prefix in the Hibernate mapping documents.

A custom naming strategy should implement the org.hibernate.cfg.NamingStrategy
interface or extend one of the two provided naming strategy classes: org.hibernate.cfg.
DefaultNamingStrategy or org.hibernate.cfg.ImprovedNamingStrategy. The default naming
strategy simply returns the unqualified Java class name as the database table name. For
instance, the table name for the Java class com.hibernatebook.AccessGroups would be
AccessCroups. The column name would be the same as the property name, and the collection
table would have the same name as the property.

CHAPTER 2 " INTEGRATING AND CONFIGURING HIBERNATE

The improved naming strategy adds underscores in place of uppercase letters in mixed-
case table and column names, and then lowercases the name. For instance, the same
com.hibernatebook.AccessGroups Java class would correspond to a database table named
access_groups.

Neither of these naming strategies takes into account the case where you have two classes
with the same name in different packages in your application. For instance, if you had two
classes, com.hibernatebook.webcast.Group and com.hibernatebook.security.Group, both
would map to a table named Group, which is not what you want. You would have to set the
table name in the class’s mapping for at least one (if not both, for clarity). We discuss setting
table names in Chapter 6, on mapping.

After you create a naming strategy, pass an instance of the naming strategy to the
Configuration object’s setNamingStrategy() method:

public Configuration setNamingStrategy(NamingStrategy namingStrategy)

Be sure to call this method before building the session factory from the Configuration.
An example of this call, using the ImprovedNamingStrategy naming strategy, would be

Configuration conf = new Configuration()
conf.setNamingStrategy (ImprovedNamingStrategy.INSTANCE);

As you can see, you could also implement the NamingStrategy interface yourself and pass
it to the Configuration object using this method.

Using a Container-Managed Data Source

If your application server manages data sources, Hibernate can obtain a data source through a
JNDI lookup. You will need to specify the name of the data source in JNDI, along with several
optional properties. Use the hibernate.connection.datasource property to specify the JNDI
name, and the hibernate.jndi.url and hibernate.jndi.class properties to specify the loca-
tion of the container’s JNDI provider and the class name of the container’s implementation of
the JNDI InitialContextFactory interface. You may also use the hibernate.connection.
username and hibernate.connection.password properties to specify the database user your
application uses, just like a normal JDBC connection. For example, your hibernate.properties
file may have these lines for a WebLogic 7.0 managed data source:

hibernate.connection.datasource=java:/comp/env/jdbc/TestDB
hibernate.connection.username=dbuser
hibernate.connection.password=dbpassword
hibernate.jndi.url= t3://localhost:7001
hibernate.jndi.class= weblogic.jndi.WLInitialContextFactory

If you use a container-managed data source, the container will also manage your
transactions.

The Session Factory

The Hibernate session factory creates Session objects for a database connection and manages
connection data, caching, and mappings behind the scenes. After you create and populate a

23

24

CHAPTER 2 ©" INTEGRATING AND CONFIGURING HIBERNATE

Configuration object, you will need to build a session factory from the Configuration. Your
application is responsible for managing the session factory. You should only have one session
factory, unless you are using Hibernate to connect to two or more databases with different set-
tings, in which case you would have one session factory for each database.

To maintain backwards compatibility with Hibernate 2, the Hibernate 3 session factory
creates org.hibernate.classic.Session session objects. The classic session objects imple-
ment all of the Hibernate 3 session functionality, in addition to the deprecated Hibernate 2
session methods. We cover the changes in core functionality between Hibernate 2 and 3 in
Chapter 14.

Obtain a session from the SessionFactory object with one of the openSession() methods.
There are four openSession() methods (see Listing 2-2). The no-argument openSession()
method opens a session with the database connection and interceptor specified in the
SessionFactory’s original configuration. You can pass a JDBC connection, a Hibernate inter-
ceptor, or both as arguments to the other openSession() methods.

Listing 2-2. openSession() Methods

public org.hibernate.classic.Session openSession() throws HibernateException

public org.hibernate.classic.Session openSession(Interceptor interceptor) w»
throws HibernateException

public org.hibernate.classic.Session openSession(Connection connection, =

Interceptor interceptor)

public org.hibernate.classic.Session openSession() throws HibernateException

We discuss Hibernate interceptors in Chapter 11. You can also retrieve metadata and sta-
tistics from the SessionFactory. Metadata is covered in Chapter 4.

The other important method on the session factory is close(). The close() method
cleans up after the session factory, so it is important to be completely through with all Hiber-
nate session operations before closing down the session factory. When the session factory
closes, it destroys the cache for the entity persisters, the collection persisters, the query cache,
and the timestamp cache. Then the session factory closes the JDBC connection provider and
removes the current instance from its JNDI object factory binding. The session factory also
auto-drops the database schema if you set the hibernate.hbm2ddl.auto property to create-
drop.

public void close() throws HibernateException

The Hibernate developers designed their implementation of the SessionFactory interface
to be scalable in a multithreaded application—because there is only one session factory in the
application for each database.

SQL Dialects

JDBC abstracts away many of the underlying connection details for each relational database,
but every relational database supports a different set of features and uses a slightly different
version of SQL. Some of the features that differ between relational databases are the syntax for
marking identity columns, column data types, available SQL functions, foreign key constraint
syntax, limits, GUID support, and support for cascade deletes.

CHAPTER 2 " INTEGRATING AND CONFIGURING HIBERNATE

Hibernate abstracts away all of these changes into SQL dialects. Each supported database
has its own dialect. When Hibernate constructs an SQL query, it uses the dialect for valid syn-
tax for the current database. Hibernate 3 comes with over 20 different dialects. All of the
dialects are in the org.hibernate.dialect package. Table 2-2 shows the supported databases
in Hibernate 3 and their corresponding dialect classes.

Table 2-2. Supported Databases and Dialect Class Names for Hibernate 3

Database Name

Dialect Class Name

DB2/390

DB2/400

DB2

Derby

Firebird
FrontBase
HSOLDB

Informix

Ingres
Interbase

Mckoi

MySQL

MySQL with InnoDB tables
MySQL with MyISAM tables
Oracle 9

Oracle
PointBase
PostgreSQL
Progress

SAP DB

SQL Server
Sybase 11
Sybase Anywhere
Sybase

DB2390Dialect
DB2400Dialect
DB2Dialect
DerbyDialect
FirebirdDialect
FrontBaseDialect
HSQLDialect
InformixDialect
IngresDialect
InterbaseDialect
MckoiDialect
MySQLDialect
MySQLInnoDBDialect
MySQLMyISAMDialect
Oracle9Dialect
OracleDialect
PointbaseDialect
PostgreSQLDialect
ProgressDialect
SAPDBDialect
SQLServerDialect
Sybase11Dialect
SybaseAnywhereDialect
SybaseDialect

Configure your chosen dialect with the hibernate.dialect property. In Chapter 8, we
discuss how to write queries with HQL. HQL provides object-querying functionality that is
database-independent. Hibernate translates HQL into database-specific SQL using hints pro-
vided by the SQL dialect classes. In addition, Hibernate provides a native SQL facility, which is
especially useful for porting existing JDBC applications to Hibernate or for improving the per-
formance of complicated queries.

25

26

CHAPTER 2 ©" INTEGRATING AND CONFIGURING HIBERNATE

Database Independence

Choosing your level of database independence is an important design decision. Typically, Java
developers prefer to keep logic in the Java application layer as opposed to the database layer
(such as triggers or stored procedures). With Hibernate, this makes it easy to create a data-
base-independent Java application. Database administrators generally prefer to use the
database for logic. For referential integrity, modeling the foreign key constraints in the data-
base (as opposed to using Java code) is much simpler, so there is little controversy on that
subject. Some of the arguments for maintaining the logic at the Java application layer are that
switching databases is easier, and all code is maintained in one language. One argument for
maintaining logic at the database level is that more than one application may be using the
database, and maintaining the logic in one place guarantees consistency. Another argument is
that the programming style is different between Java (object-oriented) and SQL (set-oriented).

Summary

In this chapter, we explained how to integrate Hibernate into your Java application. We also
detailed the configuration options for Hibernate, including the available Hibernate property
settings. We recommended using the hibernate.cfg.xml XML configuration for Hibernate
because it offers the ability to configure mapping files instead of configuring the mapping files
in Java code. Naming strategies allow you to create a consistent company or application-wide
database table-naming convention, and they also give you the ability to easily map your
Hibernate classes to databases with existing naming conventions. Hibernate uses dialects to
define different behaviors for different databases—each database has its own feature set and
SQL compatibility quirks, and Hibernate provides built-in support for most common rela-
tional databases.

In the next chapter, we build and examine a sample Hibernate application that illustrates
the core Hibernate concepts.

CHAPTER 3

Building a Simple Application

In this chapter, we’ll take another look at some of the steps necessary to get the example from
Chapter 1 up and running. We'll also build a somewhat larger application from scratch.

Install the Tools

Assuming you already have a JDK installed (version 1.3 or later) and available on your work-
station, you will need Hibernate and a database. You may also want to install the Ant build
tool.

Hibernate 3

The latest version of Hibernate is always available from http://hibernate.org/ under the left-
hand menu named “Download.” Various older versions and additional libraries are available
from the resulting page, but you will need to select Hibernate 3.0.2 or a later version. Down-
load the archive and unpack that to a local directory. For the purpose of our examples, this will
be the directory C: \home\hibernate-3.0.

The unpacked archive contains all of the source code for Hibernate itself, a Jar library
built from this source, and all of the library files that are necessary to run our sample.

HSQL 1.7.3.3

The database we will be using in our examples is the HSQL database. This is written in Java and is

freely available Open Source software. The homepage of HSQL is http://hsqldb. sourceforge.net/
and we will be using version 1.7.3.3. In practice, we expect that any later version will also be suit-
able. HSQL is derived from a code originally released as “Hypersonic.” You may encounter the term
in some of the HSQL documentation and should treat it as synonymous with “HSQL.”

We assume in our examples that you will be unpacking HSQL to C:\home\hsqldb\ and that
you will be using a database called Hibernate. First, create a directory to contain the Hibernate
files, for example, C: \home\hsqldb\hibernate\, and then place the following file named
server.properties (see Listing 3-1) into that directory:

27

28

CHAPTER 3 " BUILDING A SIMPLE APPLICATION

Listing 3-1. Configuration File for the Hibernate Example Database

Filename: C:\home\hsqldb\server.properties
#

Hibernate examples database - create a

database on the default port.

Specifies the path to the database

files - note that the trailing slash

IS required.
server.database.0=file:/home/hsqldb/hibernate/

Specifies the name of the database
server.dbname.O=hibernate

You can then manually run the following command from the new Hibernate directory to
start up the database server:

java -classpath ..\lib\hsqldb.jar org.hsqldb.Server

To shut down the database in an orderly fashion, you will want to create and compile the
simple Java program shown in Listing 3-2 (this will require hsqldb. jar in the classpath for both
compilation and runtime).

Listing 3-2. Simple Shutdown Logic for the HSQL Server

import java.sql.*;

public class Shutdown {
public static void main(String[] argv)
throws Exception
{
Class.forName("org.hsqldb.jdbcDriver");
Connection c =
DriverManager.getConnection(
"jdbc:hsqldb:hsql://localhost/hibernate”,
"sa",
")
Statement s = c.createStatement();
s.execute("SHUTDOWN");
c.close();

The alternative to this is to use the DatabaseManager tool provided with HSQL. This and
many other features are comprehensively documented in the files you unpacked into the
HSQL directory and on the HSQL website. Sadly, the details of HSQL are outside the scope of
this book, but we think you will find it extremely useful to be aware of this excellent tool.

CHAPTER 3 © BUILDING A SIMPLE APPLICATION

Most of our examples are tailored to HSQL because HSQL will run on any of the platforms
that Hibernate will run on, and because HSQL is freely available with minimal installation
requirements. However, if you must run the examples with your own database, then the differ-
ences mostly boil down to

e The Hibernate dialect class.

e The JDBC driver.

* The Connection URL for the database.
e The username for the database.

e The password for the database.

You will see where these can be specified later in this chapter.

Ant 1.6.2

Optionally, you may want to install the Ant build tool. Ant is available from
http://ant.apache.org/. Our examples are built with Ant 1.6.2. We will not attempt to explain
the build.xml format in detail; if you are familiar with Ant, then the example build script pro-
vided in this chapter will be enough to get you started—and if not, then Ant is a topic in its
own right. We recommend Enterprise Java Development on a Budget by Christopher M. Judd
and Brian Sam-Bodden (Apress, 2004) for good coverage of Open Source tools such as Ant.

Listing 3-3 provides the Ant script to build the example for Chapter 3, and we provide a
(simpler) script to build the example from Chapter 1 later in the chapter. Note that our script
here includes an Ant task to generate the schema directly from the mapping files.

Listing 3-3. An Ant Script to Build the Chapter 3 Examples

<project default="all">

<property name="hibernate" location="/home/hibernate-3.0" />
<property name="jdbc" location="/home/hsqldb/hsqldb.jar" />

<property name="src" location="src" />
<property name="config" location="." />
<property name="dist" location="dist" />
<property name="bin" location="${dist}/bin" />
<property name="1ib" location="${dist}/1ib" />
<property name="name" value="chapter03" />

<path id="classpath.base">
<pathelement location="." />
<pathelement location="${bin}" />
<pathelement location="${hibernate}/hibernate3.jar" />
<fileset dir="${hibernate}/1ib" includes="**/*.jar" />
<pathelement location="${jdbc}" />
</path>

29

30 CHAPTER 3 " BUILDING A SIMPLE APPLICATION

<target name="init">
<mkdir dir="${dist}" />
<mkdir dir="${bin}" />
<mkdir dir="${1ib}" />
</target>

<target name="schema">
<taskdef
name="schemaexport"
classname="org.hibernate.tool.hbm2ddl.SchemaExportTask"
classpathref="classpath.base" />

<schemaexport
properties="hibernate.properties"
quiet="no"
text="yes"
drop="no"
output="export.sql">
<fileset dir="${src}">
<include name="**/*_ hbm.xml"/>
</fileset>
</schemaexport>
</target>

<target name="compile" depends="init">
<javac srcdir="${src}" destdir="${bin}">
<classpath refid="classpath.base" />
</javac>
</target>

<target name="dist" depends="compile">
<Jar
destfile="${1ib}/${name}.jar"
basedir="."
includes="build.xml,src/**,cfg/**,bin/**"
excludes=".classpath, .project, .cvsignore" />

</target>

<target name="clean">

<delete dir="${dist}" />

<delete dir="${bin}" />

<delete file="${lib}/${name}.jar" />
</target>

<target name="all" depends="dist" />
</project>

CHAPTER 3 © BUILDING A SIMPLE APPLICATION

Tip Although we would prefer to use a single configuration file for both running the examples and gener-
ating the schema, the SchemaExpoxrt task in the current release of Hibernate 3 cannot correctly import the
configuration from a hibernate-configuration XML file. We, therefore, have to use a properties file and
explicitly import the hibernate-mapping files, as these cannot be specified in the properties file. It is worth
checking the Hibernate website to see if the problem has been fixed by the time you are reading this.

Create a Hibernate Configuration File

Hibernate can be given all of the information it needs to connect to the database and deter-
mine its mappings in several ways. For our Message of the day' example, we used the
configuration file in Listing 3-4.

Listing 3-4. The “Message of the day” Application’s Mapping File

<?xml version='1.0' encoding="utf-8'?>

<IDOCTYPE hibernate-configuration
PUBLIC "-//Hibernate/Hibernate Configuration DTD//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<session-factory>

<property name="connection.driver class">
org.hsqldb.jdbcDriver

</property>

<property name="connection.url">
jdbc:hsqldb:hsql://localhost/hibernate

</property>

<property name="connection.username">sa</property>

<property name="connection.password"> </property>

<property name="pool_size">5</property>

<property name="show_sql">false</property>

<property name="dialect">
org.hibernate.dialect.HSQLDialect

</property>

<mapping resource=" Motd.hbm.xml"/>

</session-factory>
</hibernate-configuration>

1. Inour choice of name, we are consciously emulating the Unix “Message of the day” program, which
issued announcements to users as they logged in. This was commonly abbreviated to “Motd” and
we're using the two names somewhat interchangeably.

31

32

CHAPTER 3 " BUILDING A SIMPLE APPLICATION

Most of the tags in this file should be pretty familiar from setting up JDBC connections.
The show_sql tag, set to false in our example, is extremely useful when debugging problems
with your programs—when set to true, all of the SQL prepared by Hibernate is logged to the
standard output stream (i.e., the console).

The SQL dialects, discussed in Chapter 2, allow you to select the database type that
Hibernate will be talking to. You must select a dialect even if it is the GenericDialect—most
database platforms accept a common subset of SQL, but there are inconsistencies and exten-
sions specific to each. Hibernate uses the dialect class to determine the optimal correct SQL
to use when creating and querying the database.

Caution Hibernate looks in the classpath for the configuration file. If you place it anywhere else, Hiber-
nate will complain that you haven’t provided necessary configuration details. This is true of the Hibernate
tools as well, so when you provide the --config flag to SchemaExpoxrt, for example, you are providing the
path relative to the classpath, not the full path to the file.

Hibernate does not require you to use an XML configuration file. You have two other
options. First, you can provide a normal Java properties file. The equivalent properties file
to Listing 3-4 would be

hibernate.connection.driver class=org.hsqldb.jdbcDriver
hibernate.connection.url=jdbc:hsqldb:hsql://localhost/hibernate
hibernate.connection.username=sa

hibernate.connection.password=

hibernate.pool size=5

hibernate.show sql=false

hibernate.dialect= org.hibernate.dialect.HSQLDialect

As you will notice, this does not contain the resource mapping from the XML file and, in
fact, you cannot include this information in a properties file; you'll need to directly map your
classes into the Hibernate Configuration at runtime. Here is how this can be done:

Configuration config = new Configuration();
config.addClass(Motd.class);

config.setProperties(System.getProperties());
SessionFactory sessions = config.buildSessionFactory();

Note that the Configuration object will look in the classpath for a mapping file in the
same package as the class it has been passed. So, in this example where the fully qualified
name of our class is book.hibernate.gettingstarted.Motd, we should see the following pair
of files from the root of the classpath:

/book/hibernate/gettingstarted/Motd.class
/book/hibernate/gettingstarted/Motd. hbm.xml

If, for some reason, you want to keep your mapping files in a different directory, you can
alternatively provide them as resources like this (note that this resource path must still be rela-
tive to the classpath):

CHAPTER 3 © BUILDING A SIMPLE APPLICATION

Configuration config = new Configuration();
config.addResource("config/Motd.hbm.xml");
config.setProperties(System.getProperties());
SessionFactory sessions = config.buildSessionFactory();

You may have as many or as few mapping files as you wish—however, it is conventional
to have one mapping file for each class that you are mapping placed in the same directory
as the class itself and named similarly (for example, Motd.hbm.xml in the default package to
map the Motd class also in the default package). This allows you to find any given class map-
ping quickly, and keeps the mapping files easily readable.

If you don’t want to provide the configuration properties in a file, you can apply them
directly using the -D flag. For example:

java -classpath ...

-Dhibernate.connection.driver_class=org.hsqldb.jdbcDriver

-Dhibernate.connection.url=jdbc:hsqldb:hsql://localhost/hibernate

-Dhibernate.connection.username=sa

-Dhibernate.connection.password=

-Dhibernate.pool size=5

-Dhibernate.show sql=false

-Dhibernate.dialect= org.hibernate.dialect.HSQLDialect
org.hibernate.tool.hbm2ddl.SchemaExport
--output=advert.sql
/book/hibernate/gettingstarted/Motd.hbm.xml

Given its verbosity, this is probably the least convenient of the three methods, but it is
occasionally useful when running tools such as SchemaExport on an ad hoc basis. For most
other purposes, we think that the XML configuration file is the best choice.

Run the Message of the Day Example

With Hibernate and a database installed and our configuration file created, all we need to do
now is create the classes in full, then build and run everything. Chapter 1 omitted the trivial
parts of the classes required, so we provide them in Listing 3-5 in full, and we will look at some
of the details of what is being invoked.

Listing 3-5. The Motd POJO Class

public class Motd {
protected Motd() {

}

public Motd(int id, String message) {
this.id = id;
this.message = message;

}

33

34 CHAPTER 3 " BUILDING A SIMPLE APPLICATION

public int getId() {
return id;

}

public String getMessage() {
return message;

}

public void setId(int id) {
this.id = id;
}

public void setMessage(String message) {
this.message = message;

}

private int id;
private String message;

Now, the Exception class (see Listing 3-6), which was not shown—extends Exception and
is used as a container for any exceptions thrown in the persistence layer of the application.

Listing 3-6. The MotdException Class

public class MotdException extends Exception {
public MotdException(String message) {
super (message);

}

public MotdException(String message, Throwable cause) {
super (message, cause);

}

Finally, we have the full text of the main part of the application in Listing 3-7.

Listing 3-7. The Motd Application

import java.util.logging.level;
import java.util.logging.logger;

import org.hibernate.HibernateException;
import org.hibernate.Session;

import org.hibernate.SessionFactory;
import org.hibernate.Transaction;

import org.hibernate.cfg.Configuration;

CHAPTER 3 © BUILDING A SIMPLE APPLICATION

public class HibernateMotd {

public static void main(String[] args) {
if (args.length != 1) {
System.err.println("Nope, enter one message number");
} else {
try {
int messageld = Integer.parselnt(args[0]);
Motd motd = getMotd(messageld);
if (motd != null) {
System.out.println(motd.getMessage());
} else {
System.out.printIn("No such message");

}
} catch (NumberFormatException e) {
System.err.println("You must enter an integer - " + args[0]

+ " won't do.");
} catch (MotdException e) {
System.err.println("Couldn't get the message:

n

+e);

}
¥

public static Motd getMotd(int messageld)
throws MotdException
{
SessionFactory sessions =
new Configuration().configure().buildSessionFactory();
Session session = sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();

Motd motd = (Motd)session.get(Motd.class, new Integer(messageld));

tx.commit();

tx = null;

return motd;
} catch (HibernateException e) {

if (tx != null) tx.rollback();

log.log(Level.SEVERE, "Could not acquire message", e);

throw new MotdException(

"Failed to retrieve message from the database.",e);

} finally {

session.close();

}

35

36

CHAPTER 3 " BUILDING A SIMPLE APPLICATION

}

private static final Logger log = Logger.getAnonymouslogger();
}

The Ant build script in Listing 3-8 will build these class files into a suitable . jar file.

Listing 3-8. The Motd Ant Build Script

<project default="all">

<property name="hibernate" location="/home/hibernate-3.0" />

<property name="jdbc" location="/home/hsqldb/1lib/hsqldb.jar " />
<property name="src" location="." />

<property name="config" location="." />

<property name="bin" location="bin" />

<property name="name" value="motd"/>

<path id="classpath.base">
<pathelement location="${bin}" />
<pathelement location="${hibernate}/hibernate3.jar" />
<fileset dir="${hibernate}/1ib" includes="**/*.jar" />
<pathelement location="${jdbc}" />

</path>

<path id="classpath.run">
<pathelement location="${config}" />
<path refid="classpath.base" />
</path>

<target name="init">
<mkdir dir="${bin}" />
</target>

<target name="compile" depends="init">
<javac srcdir="${src}" destdir="${bin}">
<classpath refid="classpath.base" />
</javac>
</target>

<target name="dist">
<jar destfile="${name}.jar"
basedir="${bin}"
/>
</target>

CHAPTER 3 © BUILDING A SIMPLE APPLICATION

<target name="clean">
<delete dir="${bin}" />
<delete file="${name}.jar"/>
</target>

<target name="all" depends="dist" />
</project>

Run Ant and a . jar file will be built representing the Message of the day example
application.

The next step is to build the database. This can be done manually, of course, but even if
you prefer to do this, generating the SQL to create the database is a useful check to make sure
that the mappings and the data model correspond correctly.

To keep things readable, we will set the classpath environment variable for these examples,
although we would recommend either setting it with the classpath flag --classpath or adding
a suitable task to the Ant script. The classpath should include

hibernate3.jar
Available from the root of the Hibernate directory is

commons-logging-1.0.4.jar
cglib-full-2.0.2.jar
commons-collections-2.1.1.jar
antlr-2.7.4.jar
dom4j-1.5.2.jar
ehcache-1.1.jar

jta.jar

These are all provided in the 1ib subdirectory of the Hibernate directory (along with a
README. txt file that briefly describes each of the provided . jar files).
You need to include the JDBC driver for your database. For example:

hsqldb. jar

You will also need to include the . jar built from the Ant script, motd. jar.
The command to build the schema is then

java org.hibernate.tool.hbm2ddl.SchemaExport --text --output=motd.sql =
--config=hibernate.cfg.xml

This will display, amongst the logging messages, the SQL being written to the motd.sql
file. If you want to inject this directly into the database, remove the text and output flags.

Caution You can lose all of your data if you run the SchemaExport tool with the wrong flags. Although
you can use the text flag to prevent it running against the database directly, it is too easy to omit this. We
recommend that you never run the tool directly on a machine containing data that you value, because the
selection of the wrong flags will result in your tables being dropped—along with any data they may have
contained—and recreated pristine, but empty.

37

38

CHAPTER 3 " BUILDING A SIMPLE APPLICATION

Once you have run the generated SQL script to create the database, you can run the sam-
ple application, although there is not yet any data in the database:

java HibernateMotd 1
This produces (after some logging information)
No such message

Add some data to the database directly. For example, run the following SQL through
DatabaseManager if you're using HSQL:

insert into motd (id,message) values (1,'Hello World")

Run the HibernateMotd command again, and you should now see the Hello World message
after the other logging messages.

Most of the work required to get this example running is the sort of basic configuration
trivia that any application requires (writing Ant scripts, setting classpaths, and so on). The real
work consists of these steps:

1. Creating the Hibernate configuration file
2. Creating the mapping file
3. Writing the POJOs (introduced in Chapter 1)

Creating the Hibernate configuration file is generally a matter of copying and editing a
configuration file from an existing project.

Writing the POJOs can be a time-consuming task. For new projects, these can be gener-
ated directly from the mapping files, while, for older projects, a large part of Hibernate’s
appeal may be the chance to map our existing data classes without much extra effort!

The mapping file contains the relationship between the application and the database.
Obviously, this must be expressed somewhere, and the provision of comprehensive options
with sensible default values helps to keep the creation of simple mappings brief without con-
straining Hibernate’s flexibility in more complicated situations.

Persisting Multiple Objects

Our example in Chapter 1 was as simple a persistence scenario as you can imagine. In the next
few sections of this chapter, we will look at a slightly more complicated scenario.

Our example application will provide the persistence technology for an online billboard
application, as shown in Figure 3-1.

This is a gross simplification of the sort of classes that would be required in a production
application. For example, we make no distinction between the roles of users of the application,
but it should suffice to show some of the simpler relationships between classes.

Particularly interesting is the many-to-many relationship between categories and adver-
tisements. We would like to be able to have multiple categories, multiple adverts, and place
any given advert in more than one category. For example, an electric piano should be listed in
the “Instruments” category as well as the “Electronics” category.

CHAPTER 3 © BUILDING A SIMPLE APPLICATION

+user 1 *
Phone
Categor Advert User -
gory +id
+id +id +id +user:User
+title +title +name +humber
+adverts:Advert +message +password +comment
+user:User
1 | +adverts * * 1 | +user

Figure 3-1. The online billboard classes

Creating Persistence Classes

We will begin by creating the POJOs for the application. This is not strictly necessary in a new
application, as they can be generated directly from the mapping files, but since this will be
familiar territory it should help to provide some context for our creation of the mapping files.

From the class diagram, we know that four classes will be persisted into the database (see
Listings 3-9 through 3-12). Each class that will be persisted by Hibernate is required to have
a default constructor with at least package scope. They should have get and set methods for
all of the attributes that are to be persisted. We will provide each with an id field, allowing this
to be the primary key in our database (we prefer the use of surrogate keys, as changes to busi-
ness rules can make the use of direct keys risky).

Note A surrogate key is a numeric integer value, with the data type depending on the number of objects
expected (i.e., 32 bit, 16 bit, 64 bit, whatever). The surrogate key has no meaning outside the database—it
is not a customer number, a phone number, or anything else. As such, if a business decision causes previ-
ously unique business data to become nonunique, this will not cause problems since the business data does
not form the primary key.

As well as the default constructor for each class, we provide a constructor that allows the
fields other than the primary key to be assigned directly. This allows us to create and populate
an object in one step instead of several, but we let Hibernate take care of the allocation of our
primary keys.

The classes shown in Figure 3-1 are our POJOs. Their implementation follows:

39

40

CHAPTER 3 " BUILDING A SIMPLE APPLICATION

Listing 3-9. The Class Representing Users

package com.hibernatebook.chapter3;

public class User {
public User(String name, String password) {
this.name = name;
this.password = password;

}

User() {
}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public String getPassword() {
return password;

}

public void setPassword(String password) {
this.password = password;

}

protected long getId() {
return id;

}

protected void setId(long id) {
this.id = id;

}

private long id;
private String name;
private String password;

Listing 3-10. The Class Representing Phone Numbers (Associated with Users)

package com.hibernatebook.chapters;

public class Phone {
public Phone(User user, String number, String comment) {

CHAPTER 3

this.user = user;
this.number = number;
this.comment = comment;

}

Phone() {
}

public String getComment() {
return comment;

}

public void setComment(String comment) {
this.comment = comment;

}

public String getNumber() {
return number;

}

public void setNumber(String number) {
this.number = number;

}

public User getUser() {
return user;

}

public void setUser(User user) {
this.user = user;

}

protected long getId() {
return id;

}

protected void setId(long id) {
this.id = id;
}

private long id;
private User user;
private String number;
private String comment;

BUILDING A SIMPLE APPLICATION

41

42

CHAPTER 3 " BUILDING A SIMPLE APPLICATION

Listing 3-11. The Class Representing Categories (Each Having an Associated Set of Advert Objects)

package com.hibernatebook.chapter3;

import java.util.HashSet;
import java.util.Set;

public class Category {
public Category(String title) {
this.title = title;
this.adverts = new HashSet();

}

Category() {
}

public Set getAdverts() {
return adverts;

}

public void setAdverts(Set adverts) {
this.adverts = adverts;

}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;

}

protected long getId() {
return id;

}

protected void setId(long id) {
this.id = id;

}

private long id;
private String title;
private Set adverts;

CHAPTER 3 © BUILDING A SIMPLE APPLICATION 43

Listing 3-12. The Class Representing Advert (Each with an Associated User Who Placed
the Advert)

package com.hibernatebook.chapter3;

public class Advert {
public Advert(String title, String message, User user) {
this.title = title;
this.message = message;
this.user = user;

}

Advert() {
}

public String getMessage() {
return message;

}

public void setMessage(String message) {
this.message = message;

}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;

}

public User getUser() {
return user;

}

public void setUser(User user) {
this.user = user;

}

protected long getId() {
return id;

}

protected void setId(long id) {
this.id = id;

}

44

CHAPTER 3 " BUILDING A SIMPLE APPLICATION

private long id;
private String title;
private String message;
private User user;

We have not had to add any unusual features to these classes in order to support the
Hibernate tool. Most existing applications will contain POJOs “out of the box” that are com-
patible with Hibernate.

Creating the Object Mappings

Now that we have our POJOs, we need to map them to the database, representing the fields
of each directly or indirectly as values in the columns of the associated tables. We take each
in turn.

The fully qualified name of the type that we are mapping is specified, the table in which
we would like to store it is specified (we used aduser because user is a keyword in many data-
bases), and we specify that we would like to use lazy loading—this class should only be loaded
from the database if the application needs to manipulate one of its values.

The class has three fields.

The id field corresponds to the surrogate key to be used in, and generated by, the data-
base. This special field is handled by the <id> tag. The name of the field is specified by the name
attribute (so that name="1d" corresponds as it must with the method name of "getId").Itis
identified as being of long type, and we would like to store its values in the database in the
long column. We specify that it should be generated by the database, rather than by Hibernate.

The name field represents the name of the user. It should be stored in a column called
name. It has type String, and we do not permit duplicate names to be stored in the table.

The password field represents a given user’s password. It should be stored in a column
called password. It has type String.

Bearing these features in mind, the mapping file in Listing 3-13 should be extremely easy
to follow.

Listing 3-13. The Mapping of the User Class into the Database

<?xml version='1.0' encoding="utf-8'?>

<IDOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
<class name="com.hibernatebook.chapter3.User" table="aduser" lazy="true">

<id name="id" type="long" column="id">
<generator class="native"/>

</id>

<property name="name" column="name" type="string" unique="true"/>

CHAPTER 3 © BUILDING A SIMPLE APPLICATION

<property name="password" column="password" type="string"/>

</class>
</hibernate-mapping>

The Phone class represents a user’s phone numbers. Because any given user may have
more than one phone number, there is a many-to-one relationship between the user table and
the phone table. From our class diagram we can see that this relationship is directional—the
User class does not know what it’s phone numbers are, but the Phone class knows which User it
is owned by, so the mapping between the two is required for Phone, but not for User.

In the many-to-one tag, we represent the name of the field, user. We specify the column
that will store the relationship, aduser, the fully qualified name of the associated class, and we
specify that the column cannot contain nulls (i.e., a Phone object must be associated with a
User object, it cannot be unowned).

If that seems complicated, all we are really doing is specifying that the Phone table’s aduser
column is a foreign key onto the User table, and this will be expressed in the SQL generated
from this mapping.

The other fields are similar to those in the User mapping (see Listing 3-14).

Listing 3-14. The Mapping of the Phone Class into the Database

<?xml version='1.0' encoding="utf-8'?>

<IDOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
<class name="com.hibernatebook.chapter3.Phone" table="phone">

<id name="id" type="long" column="id">
<generator class="native"/>
</id>

<property name="number" column="number" type="string"/>
<property name="comment" column="comment" type="string"/>

<many-to-one
name="user"
column="aduser"
class="com.hibernatebook.chapter3.User"
not-null="true"/>

</class>
</hibernate-mapping>

45

46

CHAPTER 3 " BUILDING A SIMPLE APPLICATION

The Category mapping presents another type of relationship—many-to-many. Each
Category object is associated with a set of Adverts, while any given Advert can be associated
with multiple Categories.

The set tag indicates that the field in question has java.util.Set type with the name
adverts. This sort of relationship requires the creation of an additional link table, so we specify
the name of the table containing that information.

We state that the primary key (used to retrieve items) for the objects contained in the link
table is represented by the id column, and provide the fully qualified name of the class type
contained in the table. We specify the column in the link table representing the adverts associ-
ated with each category.

Again, this is complicated when described, but if you look at the example table in
Listing 3-14, the need for each field in the mapping becomes clear (see Listing 3-15).

Listing 3-15. The Mapping of the Category Class into the Database

<?xml version='1.0' encoding="utf-8'?>

<IDOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
<class name="com.hibernatebook.chapter3.Category" table="category">

<id name="id" type="long" column="id">
<generator class="native"/>
</id>

<property name="title" column="title" type="string" unique="true"/>

<set name="adverts" table="link category advert">

<key column="id"/>

<many-to-many class="com.hibernatebook.chapter3.Advert" column="advert"/>
</set>

</class>
</hibernate-mapping>

Finally, we represent the Advert class (see Listing 3-16). This class does not introduce any-
thing that we have not encountered in the first three mappings.

Listing 3-16. The Mapping of the Advert Class into the Database

<?xml version='1.0" encoding="utf-8'?>

<IDOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

CHAPTER 3 © BUILDING A SIMPLE APPLICATION

<hibernate-mapping>
<class name="com.hibernatebook.chapter3.Advert" table="advert">

<id name="id" type="long" column="id">
<generator class="native"/>
</id>

<property name="message" column="message" type="string"/>
<property name="title" column="title" type="string"/>

<many-to-one
name="user"
column="aduser"
class="com.hibernatebook.chapter3.User"
not-null="true"/>

</class>
</hibernate-mapping>

Once you have created the individual mapping files, you need to tell Hibernate where to
find them. If you're using a Hibernate configuration file as with the Chapter 1 example, the
simplest thing to do is include them directly within this.

For our example, take the configuration file used for Chapter 1 and substitute for this line

<mapping resource="book/hibernate/gettingstarted/Motd.hbm.xml"/>
the following four mapping resource entries:

<mapping resource="com/hibernate/chapter3/Advert.hbm.xml"/>
<mapping resource="com/hibernate/chapter3/Category.hbm.xml"/>
<mapping resource="com/hibernate/chapter3/Phone.hbm.xml"/>
<mapping resource="com/hibernate/chapter3/User.hbm.xml"/>

Creating the Tables

With the object mapping in place, and our Hibernate configuration file set up correctly, we
have everything we need to generate a script to create the database for our application by
invoking the SchemaExport tool.

Even though we can generate the database directly, we also recommend taking some time
to work out what schema you would expect your mappings to generate. This allows you to
“sanity check” the script to make sure it corresponds with your expectations. If you and the
tool both agree on what things should look like, then all is well and good—but if not, your
mappings may be wrong, or there may be a subtle error in the way that you have related your
data types.

The script in Listing 3-17 is generated by the SchemaExport. Aside from the generated for-
eign key names, it could easily have been written by hand, and it is easy to compare it against
your prior expectations of the database schema.

47

48

CHAPTER 3 " BUILDING A SIMPLE APPLICATION

Listing 3-17. The Script Generated by Our Run of the SchemaExport Tool in HSQL's Dialect of SQL

alter table phone drop constraint FK65B3D6EAB3E2EGE

alter table link_category advert drop constraint FKA7C387F0D1B
alter table link_category advert drop constraint FKA7C387FOAB3E6FD4
alter table advert drop constraint FKAB3E6FD4AB3E2E6E

drop table phone if exists

drop table link_category advert if exists
drop table aduser if exists

drop table category if exists

drop table advert if exists

create table phone (
id bigint generated by default as identity (start with 1),
number varchar(255),
comment varchar(255),
aduser bigint not null,
primary key (id)
)

create table link_category advert (
id bigint not null,
advert bigint not null,
primary key (id, advert)

)

create table aduser (
id bigint generated by default as identity (start with 1),
name varchar(255),
password varchar(255),
primary key (id),
unique (name)

)

create table category (
id bigint generated by default as identity (start with 1),
title varchar(255),
primary key (id),
unique (title)

)

create table advert (
id bigint generated by default as identity (start with 1),
message varchar(255),
title varchar(255),
aduser bigint not null,

CHAPTER 3 © BUILDING A SIMPLE APPLICATION

primary key (id)
)

alter table phone add constraint FK65B3D6EAB3E2EGE
foreign key (aduser) references aduser

alter table link category advert add constraint FKA7C387F0D1B
foreign key (id) references category

alter table link category advert add constraint FKA7C387FOAB3E6FD4
foreign key (advert) references advert

alter table advert add constraint FKAB3E6FD4AB3E2EGE
foreign key (aduser) references aduser

Note the foreign key constraints and the link table representing the many-to-one and
many-to-many relationships.

Sessions

In Chapter 6, we will look at the full lifecycle of persistence objects in detail, but we do need to
understand the basics of the relationship between the session and the persistence objects if
we are to build even a trivial application in Hibernate.

The Session and Related Objects

The session is always created from a SessionFactory. The SessionFactory is a heavyweight
object, and there would normally be a single instance per application. In some ways it is a
little like a connection pool in a connected application. In a J2EE application, it would typi-
cally be retrieved as a JNDI resource. It is created from a Configuration object, which, in turn,
acquires the Hibernate configuration information and uses this to generate an appropriate
SessionFactory instance.

The session itself has a certain amount in common with a JDBC Connection object.

To read an object from the database, you must use a session directly or indirectly. An
example of a direct use of the session to do this would be, as in Chapter 1, calling the
session.get() method, or creating a Query object from the session (a Query is very much
like a PreparedStatement).

An indirect use of the session would be using an object itself associated with the session.
For example, if we have retrieved a Phone object from the database using a session directly, we
can retrieve a User object by calling the Phone’s getUser () method, even if the associated User
object has not yet been loaded (as a result of lazy loading).

An object which has not been loaded via the session can be explicitly associated with the
session in several ways, the simplest of which is to call the session.update() method passing
in the object in question.

The session does a lot more than this, however, as it provides some caching functionality,
manages the lazy loading of objects, and watches for changes to associated objects (so that
the changes can be persisted to the database).

49

50

CHAPTER 3 " BUILDING A SIMPLE APPLICATION

A Hibernate transaction is typically used in much the same way as a JDBC transaction.

It is used to batch together mutually dependent Hibernate operations, allowing them to be
completed or rolled back atomically. Unlike JDBC, however, Hibernate can take advantage of
a transaction’s scope to limit unnecessary JDBC “chatter,” queuing SQL to be transmitted in a
batch at the end of the transaction where possible.

We will discuss all of this in much greater detail in Chapter 8, but for now it suffices that
we need to maintain a single SessionFactory for the entire application, but that the session
itself contains information that pertains only to the current thread of execution. Although a
session is lightweight, it is a stateful object. An object that has been loaded using a session
should be manipulated through the same session where possible. In a multi-threaded envi-
ronment, such as a Servlet, we will therefore want to retain each thread’s session for the
duration of that thread. The pattern in Listing 3-18 provides an efficient way in which a thread
can retrieve and (if necessary) create its session with minimal impact on the clarity of the code
doing so.

Listing 3-18. The HibernateHelper Used to Manage the Session in Our Example

package com.hibernatebook.chapter3.dao;

import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

public class HibernateHelper {

private HibernateHelper() {
}

public static Session getSession() {
Session session = (Session)HibernateHelper.session.get();
if(session == null) {
session = sessionFactory.openSession();
HibernateHelper.session.set(session);

}

return session;

private static final ThreadlLocal session = new ThreadLocal();

private static final ThreadlLocal transaction = new Threadlocal();

private static final SessionFactory sessionFactory = new =
Configuration().configure().buildSessionFactory();

Using the Session

The most common use case for our POJOs will be to create them, and to delete them. In both
cases, we want the change to be reflected in the database.

CHAPTER 3 © BUILDING A SIMPLE APPLICATION

For example, we want to be able to create a user, specifying the username and password,
and have this information stored in the database when we are done.

The logic to create a user (and reflect this in the database) is incredibly simple, as shown
in Listing 3-19.

Listing 3-19. Creating a User Object and Reflecting This in the Database

Transaction tx = null;

try {
tx = HibernateHelper.getSession().beginTransaction();
User user = new User(username, password);
HibernateHelper.getSession().save(user);
tx.commit();

} catch(HibernateException e) {
tx.rollback();

}

We begin a transaction, create the new User object, ask the session to save the object, and
then commit the transaction. If a problem is encountered (if, for example, a User with that
username has already been created in the database), then a Hibernate exception will be
thrown, and the entire transaction is rolled back.

To retrieve the User object from the database, we will make our first excursion into HQL.
HQL is somewhat similar to SQL, but you should bear in mind that it refers to the names used
in the mapping files, rather than the table names and columns of the underlying database.

The appropriate HQL query to retrieve the users having a given name field is

from User u where u.name= :username

where User is the class name, and :username is the HQL named parameter that our code will
populate when we carry out the query. This is remarkably similar to the SQL for a prepared
statement to achieve the same end:

select * from user u where user.name = ?

The complete code to retrieve a user for a specific username is shown in Listing 3-20.

Listing 3-20. Retrieving a User Object from the Database

Transaction tx = null;

User user = null;

String username="dminter";

try {
tx = HibernateHelper.getSession().beginTransaction();
Query q = HibernateHelper.getSession().createQuery(

"from User u where u.name= :username");

g.setString("username", username);
List results = q.1list();

if (results.size() == 1) {
user = (User) results.get(0);

51

52

CHAPTER 3 " BUILDING A SIMPLE APPLICATION

}

tx.commit();
} catch(HibernateException e) {
tx.rollback();

}

We begin a transaction, create a query object (similar in purpose to a PreparedStatement
in connected applications), populate the parameter of the query with the appropriate user-
name, then list the results of the query. We extract the username (if one has been retrieved
successfully) from the list, and commit the transaction. If there is a problem reading the data,
the transaction will be rolled back.

The logic to delete a user from the database (Listing 3-21) is no more complicated than
the code to save one.

Listing 3-21. Deleting a User Object and Reflecting This in the Database

User user = getUser(username);

Transaction tx = null;

try {
tx = HibernateHelper.getSession().beginTransaction();
HibernateHelper.getSession().update(user);
HibernateHelper.getSession().delete(user);
tx.commit();

} catch (HibernateException e) {
tx.rollback();

}

We acquire the User object that we want to delete, begin a transaction, and then update
the user from the session. This will reassociate the User object with the session, so that subse-
quent changes to it are reflected in the database, and it will update the object with the current
state of the data in the database. We then instruct the session to delete the User object from
the database, and commit the transaction. The transaction will roll back if there is a problem—
for example, if the user has already been deleted.

You have now seen all the basic operations that we will want to perform on our data, so
now we will take a look at the architecture we are going to use to do this.

Building Data Access Objects (DAOs)

The Data Access Object pattern is well known to most developers. The idea is to separate out
the POJOs from the logic used to persist them into, and retrieve them from, the database.
The specifics of the implementation vary—at one extreme they can be provided as interfaces
instantiated from a factory class, allowing a completely pluggable database layer. For our
example, we have selected a compromise of concrete DAO classes. Each DAO class represents
the operations that can be performed on a POJO type.

First, we will provide a base class. This is very simple, but in some circumstances you will
want to populate this with logic to acquire the session, or perform other housekeeping tasks,
as the DAOs are instantiated. For our example in Listing 3-22, we are merely using it to instanti-
ate a Logger object.

CHAPTER 3 © BUILDING A SIMPLE APPLICATION

Listing 3-22. The Base DAO Class for Our Example

package com.hibernatebook.chapter3.dao;

import java.util.logging.logger;

protected class DAO {
public DAO() {

}

public static final Logger log = Logger.getAnonymousLogger();

}

To help encapsulate the specifics of the database operations that are being carried out, we
catch any Hibernate exception that is thrown and wrap it in a business AdException instance,
as shown in Listing 3-23.

Listing 3-23. The AdException Class for Our Example

package com.hibernatebook.chapter3;

public class AdException extends Exception {
public AdException(String message) {
super (message) ;

}

public AdException(String message, Throwable cause) {
super(message,cause);

}

The UserDAO provides all the methods we require to retrieve an existing User object, delete
an existing User object, or create a new User object (see Listing 3-24). Changes to the object in
question will be persisted to the database at the end of the transaction.

Listing 3-24. The UserDAO Class for Our Example

package com.hibernatebook.chapter3.dao;

import java.util.list;
import java.util.logging.level;

import org.hibernate.HibernateException;
import org.hibernate.Query;
import org.hibernate.Session;

import com.hibernatebook.chapter3.AdException;
import com.hibernatebook.chapter3.User;

53

54 CHAPTER 3 " BUILDING A SIMPLE APPLICATION

public class UserDAO extends DAO {
public UserDAO() {

}

public User getUser(String username) throws AdException {
try {
Session session = HibernateHelper.getSession();

Query q = session.createQuery("from User u where u.name= :username");
q.setString("username", username);
List results = g.1list();

User user = null;
if (results.size() == 1) {
user = (User) results.get(0);

}

return user;
} catch (HibernateException e) {
log.log(Level.SEVERE,
"The DAO could not retrieve the named user", e);
throw new AdException(
"The DAO could not retrieve the named user", e);

}

public User createUser(String username, String password) throws AdException {
try {
User user = new User(username, password);
Session session = HibernateHelper.getSession();
session.save(user);
return user;
} catch (HibernateException e) {
log.log(Level.SEVERE,
"The DAO Could not create the user", e);
throw new AdException(
"The DAO Could not create the user", e);

}

public void deleteUser(String username) throws AdException {
try {
User user = getUser(username);
HibernateHelper.getSession().update(user);
HibernateHelper.getSession().delete(user);
} catch (HibernateException e) {
log.log(Level.SEVERE,

CHAPTER 3 © BUILDING A SIMPLE APPLICATION

"The DAO could not delete the named user", e);
throw new AdException(
"The DAO could not delete the named user", e);

The PhoneDAO provides all the methods we require to retrieve all of the Phone objects asso-
ciated with a specific User, delete an existing Phone object, or create a new Phone object (see
Listing 3-25). Changes to the object in question will be persisted to the database at the end of
the transaction.

Listing 3-25. The PhoneDAO Class for Our Example

package com.hibernatebook.chapter3.dao;

import java.util.list;
import java.util.logging.level;

import org.hibernate.HibernateException;
import org.hibernate.Query;
import org.hibernate.Session;

import com.hibernatebook.chapter3.AdException;
import com.hibernatebook.chapter3.Phone;
import com.hibernatebook.chapter3.User;

public class PhoneDAO extends DAO {
public PhoneDAO() {

}

public List getPhone(User user)
throws AdException
{
try {
Session session = HibernateHelper.getSession();
Query q = session.createQuery("from Phone p where p.user= :user");
q.setEntity("user",user);
List results = g.1list();
return results;
} catch (HibernateException e) {
log.log(Level .SEVERE, ".", e);
throw new AdException(".",e);
}
}

public Phone createPhone(String comment, String number, User user)
throws AdException

55

56 CHAPTER 3 " BUILDING A SIMPLE APPLICATION

{
try {
Phone phone = new Phone(user,number,comment);
HibernateHelper.getSession().save(phone);
return phone;
} catch (HibernateException e) {
log.log(Level.SEVERE, ".", e);
throw new AdException(".",e);
}
}

public void deletePhone(Phone phone)
throws AdException
{
try {
HibernateHelper.getSession().update(phone);
HibernateHelper.getSession().delete(phone);
} catch (HibernateException e) {
log.log(Level.SEVERE, ".", e);

non

throw new AdException(".",e);

}

The CategoryDAO provides all the methods we require to retrieve all of the Category
objects, delete an existing Category object, or create a new Category object (see Listing 3-26).
Changes to the object in question will be persisted to the database at the end of the transaction.

Listing 3-26. The CategoryDAO Class for Our Example

package com.hibernatebook.chapter3.dao;

import java.util.list;
import java.util.logging.level;

import org.hibernate.HibernateException;
import org.hibernate.Query;

import com.hibernatebook.chapter3.AdException;
import com.hibernatebook.chapter3.Category;

public class CategoryDAO extends DAO {
public CategoryDAO() {
}

public List getAllCategories()
throws AdException

CHAPTER 3

BUILDING A SIMPLE APPLICATION

{
try {
Query q = HibernateHelper.getSession().createQuery("from Category");
List list = q.list();
return list;
} catch (HibernateException e) {
log.log(Level.SEVERE, ".", e);
throw new AdException(".",e);
}
}

public Category createCategory(String title)
throws AdException

{
try {
Category category = new Category(title);
HibernateHelper.getSession().save(category);
return category;
} catch (HibernateException e) {
log.log(Level.SEVERE, ".", €);
throw new AdException(".",e);
}
¥

public void deleteCategory(Category category)
throws AdException

{
try {
HibernateHelper.getSession().update(category);
HibernateHelper.getSession().delete(category);
} catch (HibernateException e) {
log.log(Level.SEVERE, ".", e);
throw new AdException(".",e);
}
}

public void update(Category category)
throws AdException

{
try {

HibernateHelper.getSession().update(category); //Attach user

} catch (HibernateException e) {
log.log(Level.SEVERE, ".", e);

throw new AdException(".",e);

}

57

58

CHAPTER 3 " BUILDING A SIMPLE APPLICATION

The AdvertDAO provides all the methods we require to delete an existing Advert object, or
create a new Advert object (adverts are always retrieved by selecting them from a category,
and are thus indirectly loaded by the CategoryDAO class). Changes to the object in question
will be persisted to the database at the end of the transaction (see Listing 3-27).

Listing 3-27. The AdvertDAO Class for Our Example

package com.hibernatebook.chapter3.dao;
import java.util.logging.level;
import org.hibernate.HibernateException;

import com.hibernatebook.chapter3.AdException;
import com.hibernatebook.chapter3.Advert;
import com.hibernatebook.chapter3.User;

public class AdvertDAO extends DAO {
public AdvertDAO() {

}

public Advert createAdvert(String title, String message, User user)
throws AdException
{
try {
Advert advert = new Advert(title,message,user);
HibernateHelper.getSession().save(advert);
return advert;
} catch (HibernateException e) {
log.log(Level.SEVERE, ".", e);
throw new AdException(".",e);
}
}

public void deleteAdvert(Advert advert)
throws AdException
{
try {
HibernateHelper.getSession().update(advert);
HibernateHelper.getSession().delete(advert);
} catch (HibernateException e) {
log.log(Level.SEVERE, ".", e);
throw new AdException(".",e);

}

CHAPTER 3 © BUILDING A SIMPLE APPLICATION

If you compare the amount of code required to create our DAO classes here with the
amount of code that would be required to implement them using the connected approach,
you will see that Hibernate’s logic is admirably compact.

The Example Client

Listing 3-28 shows the example code tying this together. Of course, this isn't a full application,
but you now have all of the DAOs necessary to manage the advertisement database, and this
example gives a flavor of how they can be used.

The code should first be run with the single parameter init to initialize the tables with some
data. It should then be run without the parameter to extract and display all of this information
from the tables.

Listing 3-28. The Test Harness for Our Example

package com.hibernatebook.chapters;
import java.util.Iterator;

import org.hibernate.HibernateException;
import org.hibernate.Transaction;

import com.hibernatebook.chapter3.AdException;

import com.hibernatebook.chapter3.Advert;

import com.hibernatebook.chapter3.Category;

import com.hibernatebook.chapter3.Phone;

import com.hibernatebook.chapter3.User;

import com.hibernatebook.chapter3.dao.AdvertDAO;
import com.hibernatebook.chapter3.dao.CategoryDAO;
import com.hibernatebook.chapter3.dao.HibernateHelper;
import com.hibernatebook.chapter3.dao.PhoneDAQ;

import com.hibernatebook.chapter3.dao.UserDAO;

public class TestChapter3 {

public static void main(String[] args) {
Transaction tx = HibernateHelper.getSession().beginTransaction();
TestChapter3 tc3 = new TestChapter3();
try {
if ((args.length == 1) 8& args[0].equals("init")) {
tc3.populateDatabase();
tx.commit();
System.out.println("Test data created and committed");
} else {
tc3.displayDatabase();
tx.commit();

59

60 CHAPTER 3 " BUILDING A SIMPLE APPLICATION

} catch (AdException e) {
tx.rollback();
} catch (HibernateException e) {
tx.rollback();
}
}

public void displayDatabase() throws AdException {
Iterator ci = cdao.getAllCategories().iterator();
while (ci.hasNext()) {
Category category = (Category) ci.next();

System.out.println("========");
System.out.println("Category: " + category.getTitle());

Tterator ai = category.getAdverts().iterator();
while (ai.hasNext()) {
Advert ad = (Advert) ai.next();
System.out.println(" " + ad.getTitle());
System.out.printIn(" " + ad.getMessage());
System.out.println(" Contact: " + ad.getUser().getName());
Tterator pi = pdao.getPhone(ad.getUser()).iterator();
while (pi.hasNext()) {
Phone phone = (Phone) pi.next();
System.out.printIn(" " + phone.getComment() +
+ phone.getNumber());

}
System.out.println("--------);

}

public void populateDatabase() throws AdException {
Category catl = cdao.createCategory("Computing");
Category cat2 = cdao.createCategory("Instruments");

User dave = udao.createUser("dminter", "london");
pdao.createPhone("Mobile", "07973 000 000", dave);
pdao.createPhone("Home", "0208 000 000", dave);
pdao.createPhone("Work", "0207 000 000", dave);

User jeff = udao.createUser("jlinwood", "austin");
pdao.createPhone("Cell", "555 000 001", jeff);
pdao.createPhone("Home", "555 000 002", jeff);
pdao.createPhone("Work", "555 000 003", jeff);

cati1.

cati1.

cati1.

cat2.

cat2.

cat2.

cat1.

cat1.

cati1.

CHAPTER 3

getAdverts().add(

adao.createAdvert(
"Sinclair Spectrum for Sale",
"48k, original box and packaging.",
dave));

getAdverts().add(

adao.createAdvert(
"IBM PC for sale",
"Original, not clone. 640Kb.",
dave));

getAdverts().add(

adao.createAdvert(
"Apple II for sale",
"Complete with paddles. Call after 5pm",
dave));

getAdverts().add(

adao.createAdvert(
"Elderly baby Grand Piano for sale",
"Overstrung. Badly out of tune.",
dave));

getAdverts().add(

adao.createAdvert(
"Trombone for sale",
"Slide missing. £1 + £30 p&p",
dave));

getAdverts().add(

adao.createAdvert(
"Marimba wanted",
"Will offer up to £100",
dave));

getAdverts().add(
adao.createAdvert(

"Atari 2600 wanted",

"Will pay up to $10",

jeff);
getAdverts().add(
adao.createAdvert(

"Timex 2000 for sale",

"Some games, $30",

jeff);
getAdverts().add(
adao.createAdvert(

"Laptop",

"Unwanted gift from disgruntled author.

jeff));

BUILDING A SIMPLE APPLICATION

Otherwise good

condition",

61

62 CHAPTER 3 " BUILDING A SIMPLE APPLICATION

cat2.getAdverts().add(
adao.createAdvert(
"Piccolo",
"Tarnished but good sound.",
jeff));
cat2.getAdverts().add(
adao.createAdvert(
"Slightly used triangle",
"Not quite triangular anymore. $1",
jeff));
cat2.getAdverts().add(
adao.createAdvert(
"Timpani set",
"$30 total, call for postage",
jeff));

cdao.update(catl);
cdao.update(cat2);

}

private final UserDAO udao = new UserDAO();
private final PhoneDAO pdao = new PhoneDAO();
private final AdvertDAO adao = new AdvertDAO();
private final CategoryDAO cdao = new CategoryDAO();

When you run our example with the init parameter you should see the following (after
the initial logging output):

Test data created and committed

Since we have successfully committed the transaction, we know that the database has
been updated successfully. If you were to run it again with the init parameter, the transaction
will fail as soon as we try to add a user called “dminter” again—the unique constraint on the
aduser table prevents this:

SEVERE: ERROR: duplicate key violates unique constraint "category title key"
Jan 30, 2005 2:43:44 PM

org.hibernate.event.AbstractFlushingEventListener performExecutions
SEVERE: Could not synchronize database state with session
org.hibernate.exception.ConstraintViolationException:

Could not execute JDBC batch update

When you run our example without the init parameter, the output should look like this
(after the initial logging output):

CHAPTER 3 © BUILDING A SIMPLE APPLICATION 63

Category: Computing
Apple II for sale
Complete with paddles. Call after 5pm

Contact: dminter
Mobile: 07973 000 000
Home: 0208 000 000
Work: 0207 000 000
Atari 2600 wanted
Will pay up to $10
Contact: jlinwood
Cell: 555 000 001
Home: 555 000 002
Work: 555 000 003

...and so forth. It is easy to see how this logic could now be incorporated into a JSP, Servlet, or
even an EJB Session Bean.

Summary

In this chapter we've shown how to acquire the Hibernate tools, how to create and run the
example from Chapter 1, and how to create a slightly larger application from scratch, driving
the database table generation from the SchemaExport tool.

In the next chapter, we look at how the new Annotations feature of J2SE 5.0 can be used to
add mapping metadata to your Java source files.

CHAPTER 4

Using Annotations with
Hibernate

In this chapter, we are going to discuss a common set of circumstances for Hibernate devel-
opment. One scenario is that you already have a Java object model. This could be because you
used a requirements-driven development process that modeled all of the Java objects out, or
it could be because you used an agile development process and wrote most of your code with-
out a database backend. In either case, you will need to create Hibernate mappings and a
database schema for your application’s persistence. Using Hibernate 3’s new annotations fea-
ture, we can add the metadata Hibernate requires for object-relational mapping directly to
our Java classes to maintain our object model and our mapping information in one set of
source code. This helps ensure that our development process keeps the object-relational map-
pings up to date with the object model.

A less likely scenario would be if you already have a relational database schema and a Java
object model—in this case, you would need to create the Hibernate mapping documents by
hand. If you are just replacing an existing Java persistence layer with Hibernate (for instance,
because it is homegrown and difficult to maintain), then this should be an easy project because
you already understand which database tables and columns map to your Java objects and
properties. Another scenario is that one team developed the Java object model and another
team developed the database schema, and now you have to create Hibernate mapping docu-
ments that mesh the two. For scenarios where you are creating a mapping layer for a Java
object model that already exists and a database schema that already exists, refer to our chap-
ter on mapping files (Chapter 6) for directions on how to do this manually.

The last scenario is to build the Java object model for an existing database schema. The
Hibernate tools project contains a reverse-engineering wizard that will connect to a database
over JDBC and create Hibernate mapping documents, a Hibernate XML configuration file,
and the Java classes for your object model. At the time of writing, these tools were still in an
alpha state, so check the Hibernate tools web page (http://www.hibernate.org/255.html) for
documentation and downloads.

Creating Hibernate Mappings with Annotations

The first scenario we discuss begins with a Java object model. Say your development team
created a Java object model and you are ready to add persistence to your project. As you know
from previous chapters, Hibernate requires metadata to describe the object-relational map-
ping for your application.

65

66

CHAPTER 4 © USING ANNOTATIONS WITH HIBERNATE

Previous versions of Hibernate used XML files to describe these mappings, and this model
continues to work with Hibernate 3. If you wanted to create mapping documents from your
POJO source code, you could annotate your Java classes with special Hibernate-specific Java
doclet tags and use the Open Source XDoclet tool to generate XML mapping documents. Typi-
cally, you would run XDoclet through an Ant build file during your build process, and then
include the generated Hibernate XML mapping files in your target distribution. The XDoclet
solution works well for many developers. If you are interested in learning more about XDoclet,
you should visit the XDoclet web page (http://xdoclet.sourceforge.net/xdoclet/index
.html). In this book, we are going to cover the Hibernate 3 Java annotations instead of XDoclet,
but both use the same attribute-oriented style for providing Hibernate mappings. One point
to consider is that using XDoclet requires an extra step (besides compilation) to generate
Hibernate XML mapping documents, whereas using Hibernate 3’s annotations only requires
compilation. Hibernate 3 works directly with the annotated compiled Java class files, there is
no intermediate step to generate XML mappings.

Note At the time of this writing, Hibernate 3’s annotations support is still in beta. Consult the Hibernate
Annotations web page (http://www.hibernate.org/247.html) for any changes or improvements from
the beta to the production release.

The J2SE 5.0 platform now supports annotations directly inside your Java source code or
compiled classes. You do not need to run a third-party tool like XDoclet to take advantage of
source-level metadata, and Java code can access annotations at runtime through the reflec-
tion API, which opens up many more possibilities. To learn more about J2SE 5.0 annotations,
see Sun’s Java Language website (http://java.sun.com/j2se/1.5.0/docs/guide/language/
annotations.html) or Pro Java Programming, Second Edition by Brett Spell from Apress.

The Enterprise JavaBeans 3 (EJB3) expert group used the J2SE 5.0 annotations to create a
new metadata model for persistence. The new EJB3 specification uses annotations and POJO,
similar to the Hibernate 2/XDoclet solution. Although you could use XDoclet to mark up POJO
for EJB2 Entity Beans, the model was still a maintenance nightmare. The Hibernate team pro-
vided design input for a much cleaner EJB3. Hibernate 3 uses the standard EJB3 annotations,
along with several Hibernate-specific annotations. Beyond Hibernate, the EJB3 annotations
specification goes further allowing you to specify the transaction settings, security attributes,
JNDI resources, and anything else defined through deployment descriptors or interfaces in
EJB 2.1. This should lead to a much cleaner development process for EJB3 applications.

In short, with Hibernate 3 there are three different development styles for creating
mappings:

¢ Creating the XML mapping documents by hand

¢ Annotating the POJO with Hibernate XDoclet tags and generating XML mapping docu-
ments at buildtime

* Annotating the POJO with Hibernate 3/EJB3 annotations (J2SE 5.0 and higher)

You can mix and match these if you absolutely need to, although we strongly believe that
this will lead to a lot of confusion if different developers on a team are using different ways to

CHAPTER 4 = USING ANNOTATIONS WITH HIBERNATE

do the same thing. You will have to determine which of these works best for you—some devel-
opers prefer to have all of the information about an object in one source file, and others prefer
to keep their Java source code plain and uncluttered.

At the time of this writing, the annotations support in Hibernate 3 was not completely
mature, because the EJB3 specification had not been finalized. The support for annotations
should improve in future releases of the Hibernate 3 annotations toolset. One limitation you
will run into with configuration is that there is no way to override annotations through XML
mapping documents at the present time, although the Hibernate team (or other developers)
will probably add this functionality in a future release of the annotations toolset. Another limi-
tation is that the currently released version of the database schema export Ant task does not
support annotations yet.

Using Annotations in Your Application

You will need to install the Hibernate 3 annotations toolset, available from the Hibernate
home page (http://www.hibernate.org). If you do not already use JDK 5.0, you will need to
upgrade to take advantage of the native support for annotations. Use XDoclet instead of anno-
tations for metadata support if you do not want to upgrade to JDK 5.0 yet. Your application
needs the hibernate-annotations. jar from the toolset and the ejb-3.0-edr2.jar EJB3 . jar
file, although your application server may already provide its own EJB3 . jar file. At the time

of this writing, the Hibernate 3 annotations toolset was still in beta, and the EJB3 specification
was not final—specific . jar file names may have changed. Read the release notes for the
Hibernate 3 annotations toolset to determine the exact deployment requirements.

After you set up the annotations in your Java objects, the only thing you need to change in
your application is the way you add mappings to the configuration. With Hibernate annota-
tions, you can either add annotated classes to the org.hibernate.cfg.AnnotationConfiguration
object, or you can specify annotated classes in the Hibernate XML configuration file. Both
accomplish the same thing, as we show in the next example.

Introducing the Hibernate Annotations

In Chapter 3, we walked through an example that used Hibernate’s XML mapping documents
to provide metadata for our POJOs. In this section, we use the same mapping concepts from
Chapter 3, but we use annotations instead of an XML mapping file. For a more in-depth look
at mapping, read Chapter 6.

When you develop using annotations, you start with a Java class and then annotate the
source code listing with metadata notations. In J2SE 5.0, the Java Runtime Environment (JRE)
parses these annotations. Hibernate uses Java reflection to read the annotations and treat
them like a mapping. In this section, we are going to introduce the basic annotations, starting
with a single class, Book, that has no annotations or mapping information. For this example’s
purposes, we do not have an existing database schema to work with, so we need to define our
relational database schema as we go.

At the beginning of our example, the Book class is very simple. It has two fields, title
and pages, and an identifier id, which is an integer. The title is a String object, and pages is an
integer. As we go through this example, we will add annotations, fields, and methods to the
Book class. The complete source code listing for the completed Book. java is at the end of this
chapter.

67

68

CHAPTER 4 = USING ANNOTATIONS WITH HIBERNATE

Listing 4-1 is the source code for Book. java, in its un-annotated form, as a starting point
for our example.

Listing 4-1. The Book Class, Un-annotated

package com.hibernatebook.annotations;

public class Book

{
protected String title;
protected int pages;
protected int id;
public int getPages()
{
return pages;
}
public void setPages(int pages)
{
this.pages = pages;
}
public String getTitle()
{
return title;
}
public void setTitle(String title)
{
this.title = title;
}
public int getId()
{
return id;
}
public void setId(int id)
{
this.id = id;
}
}

As you can see, this is a POJO, just like our AnnotationConfiguration previous examples.
We are going to annotate this class as we go along, explaining the concepts behind annotation.

Entity Beans with @Entity

The first step is to annotate the Book class as an EJB3 Entity Bean. Instead of implementing an
EJB interface to mark the class as an Entity Bean, we add the @Entity annotation to the Book
class:

CHAPTER 4 = USING ANNOTATIONS WITH HIBERNATE

package com.hibernatebook.annotations;
import javax.persistence.*;

@Entity
public class Book

Notice that we also imported the classes from the javax.persistence package. Part of the
J2SE 5.0 annotations specification requires that we import the annotations into the source
code, so the compiler knows which annotations our markers refer to. After we add the annota-
tion to mark this class as an Entity Bean, we need to map the identifier for the class.

The @Entity annotation marks this class as an Entity Bean, so it has to have a no-argument
constructor that is at least protected scope. Other EJB3 rules for an Entity Bean class are that
the class may not be final, and the Entity Bean class has to be concrete. Many of the rules for
EJB3 Entity Bean classes and Hibernate 3 persistent objects are the same—this is because the
Hibernate team had much input into the EJB3 design process, and there are only so many
ways to design a relatively unobtrusive object-relational persistence solution.

The instance variables on the POJO need to be hidden behind getter/setter accessor
methods, and not exposed as public fields on the class. For Entity Beans, the EJB3 specification
provides two different ways for the persistence container (in this case, Hibernate) to access
the contents of the instance variables for persistence. The container can either go through the
accessor methods you created or it can access the instance variables directly. For each Entity
Bean, you may choose one access strategy or the other by providing a value named access for
the @Entity annotation. The access strategy you choose also determines where in your class
the annotations go. For accessor methods, use the value AccessType.PROPERTY for access, and
annotate the getter methods for instance variables. To make the container use the fields on
the Entity Bean directly, first give all of your persistent instance variables protected access.
The value of the access attribute will need to be AccessType.FIELD, and you should annotate
the instance variables in the class. For our Book class, we will explicitly choose to have the per-
sistence container use the accessor methods:

package com.hibernatebook.annotations;
import javax.persistence.*;

@Entity (access=AccessType.PROPERTY)
public class Book

As you can see, although we did have to add the import statement and the annotations,
this is still just a POJO that we could use for any purpose we want.

Primary Keys with @Id

Each Entity Bean has to have a primary key, which you annotate on the class with the @Id
annotation. The primary key may either be a single field or a composite field. We discuss pri-
mary key mapping in more detail in Chapter 6 if you want to brush up on the fundamental
concepts behind identity generation and primary keys.

The @Id annotation takes two attribute values: generate and generator (which is not
very useful). The generate attribute value defines the generator type to use, from the

69

70

CHAPTER 4 = USING ANNOTATIONS WITH HIBERNATE

javax.persistence.GeneratorType enumeration. If you do not specify a generator type,
the default is NONE, and your application should provide functionality for primary key genera-
tion. There are five different types of primary key generators for EJB3 on GeneratorType:

* NONE: No primary key gets generated; the application is responsible for creating unique
primary keys.

e AUTO: Hibernate decides which generator type to use, based on the database’s support
for primary key generation.

e IDENTITY: Database is responsible for determining the next primary key.

e SEQUENCE: Some databases support a SEQUENCE column type, which you can name with
the optional generator attribute value.

e TABLE: Keeps a separate table with the primary key values. The name of this table also
comes from the optional generator attribute value.

You will notice that the available values for the generate attribute do not exactly match
the values for Hibernate’s primary key generators for XML mapping.

For our Book class, we are going to use the most portable form of primary key generation,
AUTO. Letting Hibernate determine which generator type to use makes our code portable
between different databases. Remember that because we used the accessor methods for our
container access, we need to annotate the getter method for the identifier and any other
instance variables:

@Id (generate=GeneratorType.AUTO)
public int getId()
{

return id;

}

In addition to defining the class as an Entity Bean and annotating the identifier, we can
define which database tables to use for storage.

Database Table Mapping with @Table and @SecondaryTable

The @Table annotation provides the name of the table in the database for the Entity Bean.
This annotation is entirely optional; like XML mapping, Hibernate will default to using the
same name for the database table as the class. To use this annotation, provide a value for the
name attribute, for an annotation that looks like @Table(name="RS_ORDER_HISTORY"). The other
attributes are catalog, schema, and uniqueConstraints. The catalog and schema attributes
describe which database catalog and schema to use, respectively. The uniqueConstraints
attribute should be an array of javax.persistence.UniqueConstraints objects for setting the
unique constraints during generation, but it is not supported in Hibernate 3’s annotations at
the time of this writing.

The @SecondaryTable annotation provides a way to model an Entity Bean that consists of
data from several different database tables. In addition to providing an @Table annotation for
the primary database table, your Entity Bean can have zero or more @SecondaryTable annota-
tions. The @SecondaryTable annotation has the same attributes as the @Table annotation, plus

CHAPTER 4 = USING ANNOTATIONS WITH HIBERNATE

the join attribute. The join attribute is the join column for the primary database table, and it
accepts an array of javax.persistence.JoinColumn objects.

To use secondary tables, you will need to use the secondaryTable attribute for the @Column
annotation on each instance variable that gets mapped to a secondary database table. The
value of the secondaryTable attribute should be the name of that secondary database table.

Field Persistence with @Basic and @Transient

Each instance variable in your POJO is persistent by default—Hibernate will store the variable
for you. Depending on the type of instance variable, Hibernate will choose a sensible default.
Some of your objects may have fields that do not need to be stored to the database because
they are transient. The EJB3 specification provides the @Transient annotation for these tran-
sient fields. The @Transient annotation does not have any attributes, and you would simply
add it to the instance variable or the getter method, depending on the Entity Bean’s property
access strategy.

The @Basic annotation is the default annotation for instance variables. The only attribute
for @Basic is the fetch type, fetch. The only two possible fetch types are eager and lazy—the
values are on the javax.persistence.FetchType enumeration. Variables with basic annotation
persist to the database using object-relational mapping information from the @Column anno-
tation.

For our example, we can add a Date field named publicationDate to our Book class that
we would not want to store in the database. We would mark this field transient with the
@Transient annotation:

@Transient
public Date getPublicationDate()
{

return publicationDate;

}

We put the @Transient annotation on the getter method for our Book class because we
are using the property access strategy for our Entity Bean. We do not have to explicitly define
@Basic annotations for the rest of the fields to make the fields persistent.

Object-Relational Mapping Details with @Column

By default, persistent instance variables will use sensible defaults for the mapping of columns
in database tables to properties in an object. These defaults work well if you create the data-
base schema at the same time as the object model; but if you map your object model to an
existing database, or you need to override Hibernate’s defaults, use the @Column annotation to
provide specifics about the object-relational mapping for that instance variable.

The name attribute for the @Column annotation provides the name of the column on the
database table, if it is different from the name of the instance variable. The length attribute
controls the size of the database column. Set the primaryKey attribute to true if this column is
the primary key—otherwise, its default value of false does not need to be specified. If the col-
umn has to be unique, set the unique attribute to true. The default value for unique is false.
By default, the database column may contain nulls—if it cannot have any nulls stored in it,

7

72

CHAPTER 4 = USING ANNOTATIONS WITH HIBERNATE

then set the nullable attribute to false. As we discussed in the “Database Table Mapping with
@Table and @SecondaryTable” section, you may use the secondaryTable attribute to store this
instance variable in another table.

We can specify the database column used to store the title of the book. We will use a data-
base column named working title, which will have a length of 200 and will not allow null
values. The relevant excerpt from our Book class is the following:

@Column(name="working title",length=200,nullable=false)
public String getTitle()
{

return title;

}

You only need to use the @Column annotation if Hibernate’s default database mapping
does not work for your application.

Modelling Relationships with Annotations

Using annotations, we can model associations between Entity Beans. EJB3 supports
one-to-one, one-to-many, many-to-one, and many-to-many associations. Each of these has
a corresponding annotation.

The @ManyToOne annotation defines a many-to-one relationship between two Entity Beans.
When you use a many-to-one relationship, annotate the field or getter method for the owner
with the @anyToOne annotation. For instance, in our example, we will add a Publisher class
that has a one-to-many relationshop to the Book class. On the Book class, we add a publisher
field and then annotate it with @anyToOne. The @ManyToOne annotation has several attributes,
which are targetEntity, cascade, fetch, and optional. The target entity is the name of the
Entity Bean, but the default is the class of the annotated field, so the targetEntity attribute is
optional. The cascade attribute has several values, ALL, PERSIST, MERGE, REMOVE, and REFRESH.
The javax.persistence.CascadeType enumeration contains these values if you would like to
use them. You can use more than one cascade type for the attribute. These cascade types are
slightly different from the Hibernate 3 cascade types. Not every Hibernate 3 cascade type is
available (delete-orphan, evict, lock). The fetch attribute takes the same two possible fetch
values as the @Basic annotations, eager or lazy. The default type for fetch is eager. The
optional attribute defaults to true.

For many-to-one associations, the database needs a column to contain the foreign key.
The EJB3 specification defines an @JoinColumn annotation that you may use to specify the
foreign key column. If you do not provide an @JoinColumn annotation for your relationships,
Hibernate uses a default naming strategy for the foreign key column: the owner’s entity name,
an underscore, and the owner’s primary key database column name. In our example, this
would be publisher id.You may specify a new name for the foreign key column with the name
attribute. The EJB3 specification defines a referencedColumnName attribute to allow you to
specify another column (besides the primary key) to join on with the owner’s Entity Bean. The
rest of the attributes on @JoinColumn work the same way as they do on the @Column annotation
(unique, nullable, primaryKey, insertable, updatable, columnDefinition, and secondaryTable).

For our example, we have added the @ManyToOne annotation and the @JoinColumn annota-
tion. We did not need to add the @JoinColumn annotation for our example to work, the defaults
would have worked fine. The relevant excerpt from the Book class is as follows:

CHAPTER 4 = USING ANNOTATIONS WITH HIBERNATE

@ManyToOne (cascade=CascadeType.ALL)
@JoinColumn(name="publisher id")
public Publisher getPublisher()
{

return publisher;

}

Notice that we used the CascadeType enumeration to add the ALL value to the cascade
attribute. We are going to add the corresponding one-to-many relationship to the Publisher
class to make the relationship bidirectional.

The one-to-many association annotation is @neToMany. From the EJB3 specification,
the association needs to be on a Collection or a Set. There are several attributes for the
@0neToMany annotation. The first is the target entity for the one-to-many relationship,
targetEntity. The target entity should be the name of the class on the other side of the
entity relationship. Using the Java generics feature, we can specify a class for our collection;
however, in this case we do not need to use the targetEntity attribute. Additionally, we can
specify the cascade and fetch attributes, like the @ManyToOne annotation. The default fetch
type is lazy. The last attribute is mappedBy. If the one-to-many relationship is bidirectional (as
our example is), we can point Hibernate to the many-to-one relationship on the other side
with the mappedBy attribute. We would specify the name of the property on the child class that
points to the owner. In our example, that would be publisher. Listing 4-2 contains the whole
Publisher class. Notice the @0neToMany annotation, bolded in this example.

Listing 4-2. The Publisher Class, Showing the @OneToMany Annotation

package com.hibernatebook.annotations;

import javax.persistence.*;
import java.util.*;

@Entity

public class Publisher

{
protected String name;
protected Set <Book> books = new HashSet<Book>();
protected int id;

@0neToMany (mappedBy="publisher")
public Set<Book> getBooks()

{
return books;
}
public void setBooks(Set<Book> books)
{
this.books = books;
}

public String getName()
{

73

74 CHAPTER 4 = USING ANNOTATIONS WITH HIBERNATE

return name;

}
public void setName(String name)
{
this.name = name;
}

@Id (generate=GeneratorType.AUTO)
public int getId()

{
return id;
}
public void setId(int id)
{
this.id = id;
}

Also notice that we used the Java generics feature on the collection for the Publisher
class. Because we used generics, we did not have to specify an entity type for the @0neToMany
annotation.

For one-to-many relationships that are unidirectional, the Hibernate development team
recommends using an association table, similar to a many-to-many relationship.

Model many-to-many relationships with the @anyToMany annotation. The EJB3 specifica-
tion specifies that there are two sides of the many-to-many relationship: an owning side and a
non-owning, or inverse, side. We use an association table annotation, @AssociationTable, on
one side of the relationship to define the mapping between the two. The non-owning Entity
Bean should have a @ManyToMany annotation with a mappedBy attribute (like one-to-many) point-
ing to the owning Entity Bean. The defaults for the many-to-many relationship are usually
acceptable, so you do not have to specify an @AssociationTable annotation. The attributes
for @ManyToMany are the same as @neToMany, and they work the same way.

To show a many-to-many relationship, we added an Author class. A book can have more
than one author, and an author can write more than one book. We used generics again to keep
our mappings simple. Here is an excerpt from our Book class:

@ManyToMany
public Set<Author> getAuthors()

{

return authors;

}
The corresponding code in the Author class is as follows:

@anyToMany (mappedBy="authors")
public Set<Book> getBooks()
{

return books;

}

CHAPTER 4 = USING ANNOTATIONS WITH HIBERNATE

The @AssociationTable annotation has three optional attributes. The first, table, is an
@Table annotation that describes the database table. The joinColumns attribute needs to con-
tain at least one @JoinColumn annotation that describes the foreign key columns owning Entity
Bean. Its counterpart is the inverseJoinColumns attribute that also uses @JoinColumn annota-
tions, but to describe the foreign key columns for the non-owning Entity Bean.

Last, we have one-to-one relationships. We model those with the @neToOne annotation.
This annotation has the same attributes as @neToMany, plus a usePKasFK attribute. The
usePKasFK attribute controls whether both Entity Beans have the same primary key values—
if they do, this value should be true. It defaults to false where one side has a foreign key that
points to the other side’s primary key. This annotation can also have a @JoinColumn annota-
tion that describes the database column for the foreign key, just like the other relationship
annotations.

Inheritance

The EJB3 Entity Bean model supports inheritance, along with polymorphism. As we discuss in
the “Mapping Inheritance Relationships” section of Chapter 6, there are three different ways
to map database tables to a hierarchy of Java classes. EJB3 supports all three of these methods
(one table for the hierarchy, one table for each class, joins on tables for subclasses), as does
Hibernate’s implementation of the EJB3 specification. The classes in the hierarchy have to use
the same types for their primary keys, according to the EJB3 specification.

The @Inheritance annotation on an Entity Bean marks this class as part of an inheritance
hierarchy. The strategy attribute defines which object-relational inheritance mapping strat-
egy to use. From the javax.persistence.InheritanceType enumeration, the three possible
strategies are JOINED, SINGLE _TABLE, and TABLE_PER_CLASS.

For the joined inheritance strategy, we would not have to change the base class, but
we would need to add the @Inheritance annotation to the subclasses. We could specify the
column we use to join the subclass to the base class with the @InheritanceJoinColumn annota-
tion. This annotation has name, referencedColumnName, and columnDefinition attributes.

Our ComputerBook class extends our Book class, using the joined inheritance strategy (see
Listing 4-3).

Listing 4-3. The ComputerBook Class Extends the Book Class with the @Inheritance Annotation.

package com.hibernatebook.annotations;
import javax.persistence.*;

@Entity
@Inheritance(strategy=InheritanceType.JOINED)
@InheritanceJoinColumn(name="BOOK_ID")

public class ComputerBook extends Book

{

protected String softwareName;

public String getSoftwareName()
{

return softwareName;

75

76

CHAPTER 4 = USING ANNOTATIONS WITH HIBERNATE

}
public void setSoftwareName(String softwareName)
{
this.softwareName = softwareName;
}

Notice that we used the @InheritanceJoinColumn annotation, although we did not have to.

The second type of inheritance is the single table inheritance, where the data for the base
class and its subclasses is in one table. What differentiates the data in the table is a discrimina-
tor column that contains a unique value for the base class and for each subclass. For instance,
if we used this strategy for our Book and ComputerBook example, we could have a column on
our Book table that contained either “BOOK” or “COMPUTERBOOK” for each entry, denoting
which class it belonged to. We would specify this inheritance strategy with this annotation on
the Book class:

@Inheritance(strategy=InheritanceType.SINGLE_TABLE, discriminator value="BOOK")
Our ComputerBook class would contain this annotation:
@Inheritance(discriminator value="COMPBOOK")

The last type of inheritance is the table per class inheritance. We would simply specify the
inheritance strategy as TABLE_PER_CLASS.

Using the Annotated Classes in Your Hibernate Configuration

Once you have an annotated class, you will need to provide the class to your application’s
Hibernate configuration, just as if it were an XML mapping. With annotations, we can use
either the declarative configuration in the hibernate.cfg.xml XML configuration document,
or we can programmatically add annotated classes to Hibernate’s org.hibernate.cfg
.AnnotationConfiguration object. Your configuration may use both annotated classes

and XML mappings in the same configuration as you choose.

To provide declarative mapping, we use a normal hibernate.cfg.xml XML configuration
file, and add the annotated classes to the mapping (see Listing 4-4). Notice that we specified
the name of the annotated class as a mapping. We could have more than one mapping here,
and they could be either annotated classes or XML mappings.

Listing 4-4. Hibernate XML Configuration File with an Annotated Class

<?xml version="1.0" encoding="utf-8'?>
<IDOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
<session-factory>
<property name="hibernate.connection.driver class">w
org.hsqldb. jdbcDriver</property>
<property name="hibernate.connection.url">w
jdbc:hsqldb:file:annotationsdb</property>

CHAPTER 4 = USING ANNOTATIONS WITH HIBERNATE

<property name="hibernate.username">user</property>
<property name="hibernate.password">user</property>
<property name="hibernate.show sql">true</property>
<property name="dialect">org.hibernate.dialect.HSQLDialect</property>

<!-- Mapping files -->
<mapping class="com.hibernatebook.annotations.Book"/>
</session-factory>
</hibernate-configuration>

You can also add an annotated class to your Hibernate configuration programmatically.
The annotations toolset comes with an org.hibernate.cfg.AnnotationConfiguration object
that extends the base Hibernate Configuration object for adding mappings we described in
Chapter 2. The methods on AnnotationConfiguration for adding annotated classes to the con-
figuration are

addAnnotatedClass(Class persistentClass) throws MappingException
addAnnotatedClasses(List<Class> classes)
addPackage(String packageName) throws MappingException

Using these methods, you can add one annotated class, a list of annotated classes, or an
entire package (by name) of annotated classes. As with the Hibernate XML configuration file,
the annotated classes work with XML mapping files, and you can use both in an application
without problems (as long as the application runs on J2SE 5.0 or higher, of course).

Code Listings

Listing 4-5 concludes the chapter with the source code listings we did not fully include for the
Book and Author classes. The database schema also follows.

Listing 4-5. The Book Class, Fully Annotated
package com.hibernatebook.annotations;
import java.util.*;

import javax.persistence.*;

@Entity (access=AccessType.PROPERTY)
public class Book

{
protected String title;

protected Publisher publisher;
protected Set <Author> authors = new HashSet<Author>();

protected int pages;
protected int id;

77

78 CHAPTER 4 = USING ANNOTATIONS WITH HIBERNATE

protected Date publicationDate;

public int getPages()

{
return pages;
}
public void setPages(int pages)
{
this.pages = pages;
}

@Column(name="working title",length=200,nullable=false)
public String getTitle()

{
return title;
}
public void setTitle(String title)
{
this.title = title;
}

@Id (generate=GeneratorType.AUTO)
public int getId()

{
return id;
}
public void setId(int id)
{
this.id = id;
}
@Transient
public Date getPublicationDate()
{
return publicationDate;
}
public void setPublicationDate(Date publicationDate)
{
this.publicationDate = publicationDate;
}

@ManyToOne (cascade=CascadeType.ALL)
@JoinColumn(name="publisher id")
public Publisher getPublisher()

{

return publisher;

}
public void setPublisher(Publisher publisher)

CHAPTER 4 = USING ANNOTATIONS WITH HIBERNATE

{

this.publisher = publisher;
}
@anyToMany
public Set<Author> getAuthors()
{

return authors;
}
public void setAuthors(Set<Author> authors)
{

this.authors = authors;
}

Listing 4-6 demonstrates the Author class having a many-to-many relationship with the
Book class.

Listing 4-6. The Author Class, Showing a many-to-many Relationship

package com.hibernatebook.annotations;

import java.util.*;
import javax.persistence.*;

@Entity
public class Author
{

protected String name;
protected String email;

protected Set <Book> books = new HashSet<Book>();
protected int id;

@anyToMany (mappedBy="authors")
public Set<Book> getBooks()

{

return books;
}
public void setBooks(Set<Book> books)
{

this.books = books;
}
public String getName()
{

return name;
}

public void setName(String name)

79

80 CHAPTER 4 = USING ANNOTATIONS WITH HIBERNATE

{

this.name = name;
}
public String getEmail()
{

return email;
}
public void setEmail(String email)
{

this.email = email;
}

@Id (generate=GeneratorType.AUTO)
public int getId()

{
return id;
}
public void setId(int id)
{
this.id = id;
}

Last, Listing 4-7 shows the database schema for the classes in this chapter, as generated
by the SchemaExport class for the HSQL database. Notice the foreign keys, some of which we
specified in the annotations. Also notice the Book Author many-to-many association table,
where we relied on the defaults for its creation.

Listing 4-7. The Database Schema for the Example

create table Author (
id integer generated by default as identity (start with 1),
name varchar(255),
email varchar(255),
primary key (id)
)
create table Book (
id integer generated by default as identity (start with 1),
working_title varchar(200) not null,
pages integer,
publisher id integer,
primary key (id)

CHAPTER 4 = USING ANNOTATIONS WITH HIBERNATE

create table Book Author (
books id integer,
authors_id integer

)

create table ComputerBook (
BOOK_ID integer not null,
softwareName varchar(255),
primary key (BOOK ID)

)

create table Publisher (
id integer generated by default as identity (start with 1),
name varchar(255),
primary key (id)

)

alter table Book add constraint FK1FAF0990BF1C70
foreign key (publisher id) references Publisher

alter table Book Author add constraint FK1A9AOFA1B629DD87
foreign key (authors id) references Author

alter table Book Author add constraint FK1A9AOFA1D3BA8BC3
foreign key (books id) references Book

alter table ComputerBook add constraint FK98D97CC4600B1724
foreign key (BOOK ID) references Book

Summary

In this chapter, we used EJB3 annotations to add metadata to our POJOs for Hibernate.
Instead of using XML mapping documents, we can keep all of the metadata in the Java code.
Your development preferences will determine whether you like this method better than using
XML mapping documents. The EJB3 specification does not completely match Hibernate’s
capabilities. We demonstrated how to model one-to-many relationships with annotations.

We also explained how inheritance works with annotations.

81

PART 2

Hibernate 3 Reference

CHAPTER 5

The Persistence Lifecycle

In this chapter, we discuss the lifecyle of persistent objects in Hibernate. These persistent
objects are Plain Old Java Objects (POJOs) without any special marker interfaces or inheri-
tance related to Hibernate. Part of Hibernate’s popularity comes from its ability to work with
a normal object model. We also discuss the methods used for creating, retrieving, updating,
and deleting persistent objects from Hibernate.

Introduction to the Lifecycle

After adding Hibernate to your application, you do not need to change your existing Java
object model to add persistence marker interfaces or any other type of hint for Hibernate.
Instead, Hibernate works with normal Java objects that your application creates with the new
operator, or that other objects create. For Hibernate’s purposes, these can be drawn up into
two categories: objects Hibernate has entity mappings for and objects which are not recog-
nized by Hibernate. Any object has the potential to be persisted by Hibernate if it contains
instance variables that could be stored in a relational database, and if a mapping exists.

Given an instance of an object that is mapped to Hibernate, we have to describe the dif-
ferent states it could be in. Transient objects exist in memory. Hibernate does not manage
transient objects or persist changes to transient objects. You will have to ask the session to
save the transient object to the database, at which point Hibernate assigns the object an iden-
tifier. We discuss saving in more detail in the “Saving Objects” section of this chapter.

Persistent objects exist in the database, and Hibernate manages the persistence for per-
sistent objects. If properties change on a persistent object, Hibernate will keep the database
representation up to date.

The last state an object could be in is detached. Detatched objects have a representation
in the database, but the application closes the Hibernate Session object that the detached
object is associated with. The application will need to reattach a detatched object to a valid
Hibernate session to ensure that the database reflects changes to the detatched object. A
detached instance can be associated with another Hibernate session when your application
calls one of the load, refresh, merge, update, or save methods on the other session with a refer-
ence to the detached object. After the call, the detached object would be a persistent object
managed by the new Hibernate session.

Commonly, detached objects are stored in a web application’s session. A typical web
application would only keep a Hibernate session open while processing one user action at a
time. Some objects (such as a user object or an order object) would be stored in the user’s web
application session, and thus need to be reattached to a Hibernate session if the user makes a
change with the next page load.

85

86

CHAPTER 5 " THE PERSISTENCE LIFECYCLE

Prior versions to Hibernate 3 had support for the Lifecycle and Validatable interfaces.
These allowed your objects to listen for save, update, delete, load, and validate events using
methods on the object. In Hibernate 3, this functionality moved into events and interceptors,
and these interfaces were removed.

Saving Objects

Creating an instance of a class you mapped with a Hibernate mapping does not automatically
persist the object to the database. Until you explicitly save the object with a valid Hibernate
session, the object is transient, like any other Java object. In Hibernate, we use one of the
save() methods on the Session interface to store a transient object in the database:

public Serializable save(Object object) throws HibernateException
public void save(Object object, Serializable id) throws HibernateException
public Serializable save(String entityName,Object object) throws HibernateException

All of the save() methods take a transient object (which cannot be null) as an argument.
Hibernate expects to find a mapping for the transient object’s class—Hibernate cannot persist
arbitrary objects to a generalized persistence store. One of the save() methods also takes an
object id as an argument. This id also cannot be null. The first save() method passes null as
the entityName argument to the last save() method. The save() methods all create a new
org.hibernate.event.SaveOrUpdateEvent event. We discuss events in more detail in Chapter 11,
although you do not have to worry about these implementation details to use Hibernate effec-
tively.

At its most simple, we create a new object in Java, set a few of its properties, and then save
it through the session:

Supplier superCorp = new Supplier();
superCorp.setName("SuperCorp");
session.save(superCorp);

Referring back to our discussion of the various states that objects may be in, Hibernate
provides a way to save any object if you are unaware of whether it is in the transient or the
detached state with the saveOrUpdate() method. Hibernate looks at the identifier on the
object to determine whether to save or update the object to the database. The method
signature is

public void saveOrUpdate(Object object) throws HibernateException

If an object is in the persistent state, Hibernate manages the updates to the database itself
when you change a property on the object. We discuss updating in the “Updating Objects”
section of this chapter.

Object Equality and Identity

When we discuss persistent objects in Hibernate, we also need to consider the role that object
equality and identity plays with Hibernate. When we have a persistent object in Hibernate,
that object represents both an instance of a class in a particular Java Virtual Machine (JVM)
and a row (or rows) in a database table.

CHAPTER 5 " THE PERSISTENCE LIFECYCLE

Requesting a persistent object again in the same Hibernate session returns the same Java
instance of a class, which means that you can compare the objects using the standard Java ==
equality syntax. If you request a persistent object in more than one Hibernate session, Hiber-
nate will provide an instance for each session, and the == operator will return false if you
compare these object instances.

Taking this into account, if you are comparing objects in two different sessions, you will
need to implement the equals() method on your Java persistence objects. Like any other Java
application where you would create an equals() method, you should compare the values of
the object’s properties.

Loading Objects

Hibernate’s Session interface provides several load() methods for loading objects from your
database. Each load() method requires the object’s primary key as an identifier, which must
be Serializable. Because of this requirement, you should convert any primitive identifiers to
objects. In addition to the id, Hibernate also needs to know which class or entity name to use
to find the object with that id. Last, you will need to cast the Object returned by load() to the
class you desire. The basic 1oad() methods are as follows:

public Object load(Class theClass, Serializable id) throws HibernateException
public Object load(String entityName, Serializable id) throws HibernateException
public void load(Object object, Serializable id) throws HibernateException

The last load() method takes an object as an argument. The object should be of the same
class as the object you would like loaded and should be empty. Hibernate will populate that
object with the object you requested. We find this syntax to be somewhat confusing when put
into applications, so we do not tend to use it ourselves.

The other load() methods take a lock mode as an argument. The lock mode specifies
whether Hibernate should look into cache for the object, and which database lock level
Hibernate should use for the row (or rows) of data that represent this object. The Hibernate
developers claim that Hibernate will usually pick the correct lock mode for you, although we
have seen instances where it is important to manually choose the correct lock. In addition,
your database may choose its own locking strategy, for instance locking down an entire table
rather than multiple rows within a table. In order, least restrictive to most restrictive, the vari-
ous lock modes you can use are the following:

* NONE: No row-level locking, and use a cached object if available. This is the Hibernate
default.

e READ: Data that is in the middle of a transaction (and possibly invalid) should not be
read by any other SELECT queries until it is committed.

* UPGRADE: Uses the SELECT FOR UPDATE SQL syntax to lock the data until the transaction
is finished.

e UPGRADE_NOWAIT: Similar to UPGRADE, but uses the NOWAIT keyword (for Oracle), which
returns an error immediately if there is another thread using that row.

87

CHAPTER 5 " THE PERSISTENCE LIFECYCLE

All of these lock modes are static fields on the org.hibernate.LockMode class. We discuss
locking and deadlocks with respect to transactions in more detail in Chapter 9. The load()
methods that use lock modes are as follows:

public Object load(Class theClass, Serializable id, LockMode lockMode)
throws HibernateException

public Object load(String entityName, Serializable id, LockMode lockMode)
throws HibernateException

Only use the load() method if you are sure that the object exists. If you are not sure that
the object exists, then use one of the get () methods. The load() methods will throw an excep-
tion if the unique id is not found in the database. Much like load(), the get() methods require
an identifier and either an entity name or a class. There are also two get () methods that take
alock mode as an argument. The difference is that the get () method will return null if the
unique id is not found. The get() methods are

public Object get(Class clazz, Serializable id)
throws HibernateException

public Object get(String entityName, Serializable id)
throws HibernateException

public Object get(Class clazz, Serializable id, LockMode lockMode)
throws HibernateException

public Object get(String entityName, Serializable id, LockMode lockMode)
throws HibernateException

If you would like to retrieve the entity name for a given object, you can use the
getEntityName() method on the Session interface:

public String getEntityName(Object object) throws HibernateException

Using the get() methods and the load() methods is straightforward. For the following
code sample, we would be getting the Supplier id from another Java class; for instance
through a web application, someone may select a Supplier details page for the supplier with
the id 1. If we are not sure that the supplier exists, we use the get() method, where we could
check for null:

// get an id from some other Java class, for instance, through a web application
Supplier supplier = (Supplier) session.get(Supplier.class,id);
if (supplier == null)
{
System.out.println("Supplier not found for id " + id);
return;

We can also retrieve the entity name from Hibernate and use it with either the get() or
the load() methods. Remember that the load() method will throw an exception if an object
with that id cannot be found:

String entityName = session.getEntityName(supplier);
Supplier secondarySupplier = (Supplier) session.load(entityName,id);

CHAPTER 5 " THE PERSISTENCE LIFECYCLE

Refreshing Objects

Hibernate provides a mechanism to refresh persistent objects from their database represen-
tations. Typically, you will not have to use this, but it could come into use for one of three
scenarios.

The first scenario is that your Hibernate application is not the only application working
with this data. Rather than using locks to control access, you only need to load the properties
into the object for reading at this time.

Another scenario is that your application executed some SQL directly against the data-
base, and now the data in memory is out of sync with the database representation.

The last scenario is that your database uses triggers to populate properties on the
object—for instance, some database designs include a “created” timestamp as a column
that gets populated by a trigger when the record is first stored in the database. Use one of the
refresh() methods on the Session interface to refresh an instance of a persistent object:

public void refresh(Object object) throws HibernateException
public void refresh(Object object, LockMode lockMode)
throws HibernateException

Although you may be used to the idea of refreshing objects from using other Java persist-
ence systems or tools, we have found that in Hibernate, you typically do not have to worry
about using these refresh methods.

Updating Objects
Hibernate automatically manages any changes made to persistent objects. If a property
changes on a persistent object, the associated Hibernate session will queue the change for
persistence to the database using SQL. From a developer’s perspective, you do not have to do
any work to store these changes, unless you would like to force Hibernate to commit all of its
changes in the queue. You can also determine if the session is dirty and changes need to be
committed. When you commit the Hibernate transaction, Hibernate will take care of these
details for you.

The flush() method forces Hibernate to flush the session:

public void flush() throws HibernateException
You can determine if the session is dirty with the isDirty() method:
public boolean isDirty() throws HibernateException

You can also instruct Hibernate to use a flushing mode for the session with the
setFlushMode () method. The getFlushMode() method returns the flush mode for the
current session:

public void setFlushMode(FlushMode flushMode)
public FlushMode getFlushMode()

89

90

CHAPTER 5 ' THE PERSISTENCE LIFECYCLE

The possible flush modes are the following:
e ALWAYS: Every query flushes the session before the query is executed.

e AUTO: Hibernate manages the query flushing to guarantee that the data returned by a
query is up to date.

e COMMIT: Hibernate flushes the session on transaction commits.

¢ NEVER: Your application needs to manage the session flushing with the flush() method.
Hibernate never flushes the session itself.

By default, Hibernate uses the AUTO flush mode. Typically, you will not have to change the
flush mode for your application because Hibernate does an excellent job of managing the
database synchronization itself.

Deleting Objects

Removing an object from the database is straightforward. The Session interface provides a
delete() method that takes a persistent object as an argument. The argument could also be
a transient object with the identifier set to the id of the object that needs to be erased:

public void delete(Object object) throws HibernateException

In the simplest form, where you are simply deleting an object with no associations to
other objects, this is straightforward. Many objects do have associations with other objects.
In Hibernate, deletes may cascade from one object to its associated objects.

For instance, consider the situation where you have a parent with a collection of child
objects, and you would like to delete them all. The easiest way to handle this is to use the
cascade attribute on the collection’s element in the Hibernate mapping. If you set the cascade
attribute to delete or all, the delete will be cascaded to all of the associated objects. Hiber-
nate will take care of deleting these for you—deleting the parent erases the associated objects.

In some cases, your application will need to execute business logic if an object is deleted.
Rather than try and add that logic to every place where delete() gets called for that object,
you can add crosscutting functionality that should help keep your application from becoming
spaghetti code. With Hibernate, you may use either events or interceptors to do this, and we
discuss both of them in Chapter 11. The delete() method fires a DeleteEvent, which is
responsible for deleting the object.

Note In Hibernate 3, the delete(String hql) method on the Session interface was deprecated.
Instead of using the delete(String hql) method for HQL deletes, you should create a delete query and
execute it. See Chapter 8 for more about HQL and bulk deletes.

Hibernate 3 also supports bulk deletes, where your application executes a DELETE HQL
statement against the database. These are very useful for deleting more than one object at a
time because each object does not need to be loaded into memory just to be deleted. Network
traffic is greatly reduced, as are the memory requirements.

CHAPTER 5 " THE PERSISTENCE LIFECYCLE

There is another type of cascading operation that has to do with deletes, named
delete-orphan. If you remove a child object from a collection, you can ask Hibernate to
automatically delete the child object. This only works if there is a one-to-many relationship
between the parent and the child. We discuss delete-orphan in the next section.

Cascading Operations

With Hibernate, the operations we discussed so far in this chapter may be cascaded through
an object’s collections. Hibernate provides several different types of cascading that corre-
spond to the different Hibernate operations:

* create

° merge

* delete

* save-update
e evict

e replicate

e lock

e refresh

You may combine these values in a comma-separated list to allow cascading for several
different operations. Rather than add all of these in a comma-separated list, Hibernate pro-
vides a shortcut value named all that tells Hibernate to cascade all of these operations from
the parent to each child object (for that relationship).

As part of the Hibernate mapping process, you can tell Hibernate to use one of these
cascading types for a relationship between two objects (the parent and the child). On the col-
lection or property element in the mapping file, set the cascade attribute to the type (or types)
you would like to use. Hibernate also provides an optional way to set a default cascading type,
using the default-cascade attribute on the <hibernate-mapping> XML element. Use the
default cascading to specify how properties and collections (that do not have a cascade attrib-
ute in their mapping) perform cascading. The default-cascade attribute accepts the same
values as the cascade attribute. You may override the default-cascade attribute by providing a
cascade attribute for those properties or collections.

The last possible cascading type is delete-orphan. Use delete-orphan to remove a child
object from the database when you remove the child from the parent’s collection. This cascad-
ing type only works on one-to-many associations. The all cascading type does not include
delete-orphan—you will have to use "all,delete-orphan", such as in the following excerpt
from a Hibernate mapping file:

<bag name="products" inverse="true" cascade="all,delete-orphan">
<key column="supplierId"/>
<one-to-many class="Product"/>

</bag>

91

92

CHAPTER 5 " THE PERSISTENCE LIFECYCLE

Simply remove a child object from a parent object’s collection after you have added the
delete-orphan cascading type. Hibernate will remove the child object from the database itself,
without any additional calls. For instance, here is an example that removes a child object from
the collection:

supplier.getProducts().remove(product);

We discuss Hibernate mapping in more detail in Chapter 6.

Querying Objects

Hibernate provides several different ways to query for objects stored in the database. The cri-
teria query API is a Java API for constructing a query as an object. HQL is an object-oriented
query language, similar to SQL, that you may use to retrieve objects that match the query.
Hibernate provides a way to execute SQL directly against the database to retrieve objects, if
you have legacy applications that use SQL or if you need to use SQL features that are not sup-
ported through HQL and the criteria query API. Chapter 7 covers the criteria query API and
Chapter 8 discusses HQL and the native SQL facility.

EJB3/JSR 220 Persistence API

The Hibernate persistence concepts we talked about in this chapter also largely map to the
EJB3 specification. At the time of this writing, the EJB3 specification is not yet released, and
Hibernate 3 does not include direct support for the EJB3 javax.persistence.EntityManager
interface, which is similar to the Hibernate Session interface. If you would like to code directly
to the EJB3 interfaces, support will most likely be found in a version of the JBoss application
server.

The JBoss application server team worked with the Hibernate team to implement EJB3
using Hibernate as the persistence mechanism in JBoss. For more information about the
JBoss/Hibernate/EJB3 integration, visit the JBoss product web page for EJB3 at http://
www . jboss.org/products/ejb3.

Summary

Hibernate provides a simple API for creating, retrieving, updating, and deleting objects from
the relational database through the Session interface. Understanding the difference between
transient, persistent, and detached objects in Hibernate allows us to understand how changes
to the objects update the database table.

After learning how to manage objects with Hibernate in this chapter, the following chap-
ter discusses how to create mapping files for Hibernate’s object-relational mapping. We go
into depth for querying objects with the criteria query API in Chapter 7, and how to use the
Hibernate Query Language in Chapter 8.

CHAPTER 6

Creating Mappings

In our simple example programs in Chapter 1 and Chapter 3, we demonstrated how a map-
ping file could be used to establish the relationship between the object model and the
database schema. A mapping file can map a single class or multiple classes to the database.
The mapping can also describe standard queries (in HQL and in SQL) and filters.

Hibernate Types

Although we have referred to the Hibernate types in passing, we have not discussed the termi-
nology in any depth. In order to express the behavior of the mapping file elements, we need to
make these fine distinctions explicit.

Hibernate types fall into three broad categories: entities, components, and values.

Entities

Generally, an entity is a POJO class that has been mapped into the database using the <class>
or <subclass> elements.

An entity can also be a dynamic map (actually a Map of Maps). These are mapped
against the database in the same way as a POJO, but with the default entity mode of the
SessionFactory set to dynamic-map.

The advantage of POJOs over the dynamic-map approach is that compile-time type safety is
retained. Conversely, dynamic-maps are a quick way to get up and running when building pro-
totypes. We recommend that you use the standard entity mode unless you need to sacrifice
accuracy for timeliness.

We have decided to omit discussion of some features pertaining to the XML mapping
metadata. This permits an alternative representation of data as the contents of an XML docu-
ment, instead of a POJO or Map. This is a somewhat experimental feature in Hibernate 3 and,
at the time of this writing, we do not recommend that you use it. For more information, con-
sult the Hibernate website (http://www.hibernate.org).

Components

Lying somewhere between entities and values are component types. When the class represen-
tation is simple and its instances have a strong one-to-one relationship with instances of
another class, then it is a good candidate to become a component of that other class.

93

94

CHAPTER 6 © CREATING MAPPINGS

The component will normally be mapped as columns in the same table that represents
most of the other attributes of the owning class, so the strength of the relationship must justify
this inclusion.

The advantage of this approach is that it allows us to dispense with the primary key of the
component and the join to its containing table. If a poor choice of component is made (for
example, where a many-to-one relationship actually holds), then data will be duplicated
unnecessarily in the component columns.

Values

Everything that is not an entity or a component is a value. Generally these correspond to the
data types supported by your database, the collection types, and, optionally, some user-
defined types.

The details of these mappings will be vendor specific, so Hibernate provides its own value
type names and the Java types are defined in terms of these (see Table 6-1).

Table 6-1. The Standard Hibernate 3 Value Names

Primitives and Wrappers

Hibernate 3 Type Corresponding Java Type
integer int, java.lang.Integer
long long, java.lang.Long

short short, java.lang.Short
float float, java.lang.Float
double double, java.lang.Double
character char, java.lang.Character
byte byte, java.lang.Byte
boolean, yes no, true false boolean, java.lang.Boolean

Other Classes

Hibernate 3 Type Corresponding Java Type
string java.lang.String
date, time, timestamp java.util.Date
calendar, calendar_date java.util.Calendar
big decimal java.math.BigDecimal
big integer java.math.BigInteger
locale java.util.locale
timezone java.util.TimeZone
currency java.util.Currency
class java.lang.Class
binary byte[]

text java.lang.String

serializable java.io.Serializable

CHAPTER 6 © CREATING MAPPINGS

Other Classes

Hibernate 3 Type Corresponding Java Type
clob java.sgl.Clob
blob java.sql.Blob

In addition to these standard types, you can create your own. Your user-type class should
implement the org.hibernate.foo.UserType or the org.hibernate.foo.CompositeUserType
interfaces. Once implemented, a custom type can behave identically to the standard types,
though depending on your requirements it may be necessary to specify multiple column
names to contain its values, or to provide initialization parameters for your implementation.

For one-off cases, we recommend that you use a component, which has nearly identical
semantics. Unless you propose to make substantial use of a custom type throughout your
application, it will not be worth the effort. We do not discuss this feature further in this text.

The Anatomy of a Mapping File

A mapping file is a normal XML file. It is validated against a DTD, which can be downloaded
from http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd or you can look through
the annotated version on the companion site for this book (http://hibernatebook.com/).

The terminology used in the naming of elements and attributes is somewhat confusing at
first because it is the point of contact between the jargon of the object-oriented and the rela-
tional worlds.

The Hibernate-Mapping Element

The root element of any mapping file is <hibernate-mapping>. As the top-level element, the
attributes of this are mostly defining default behaviors and settings to apply to the child
elements (see Table 6-2).

Table 6-2. The <hibernate-mapping> Attributes

Attribute Values Default Description

auto-import true, false true By default, this allows you to use the unqualified
class names in Hibernate queries. You would only
normally set this to false if the class name would
otherwise be ambiguous.

catalog The database catalog against which queries should
apply.
default-access property The default access type. If set to property, then

get and set methods are used to access the data.
If set to field, then the data is accessed directly.
Alternatively, you can provide the class name of a
PropertyAccessor implementation defining any
other access mechanism.

Continued

95

96

CHAPTER 6 © CREATING MAPPINGS

Table 6-2. Continued

Attribute Values Default Description

default-cascade none Defines how (and if) direct changes to data should
affect dependent data by default.

default-lazy true, false true Defines whether lazy instantiation is used by
default. Generally, the performance benefits are
such that you will want to use lazy instantiation

wherever possible.

package The package from which all implicit imports are
considered to occur.

schema The database schema against which queries
should apply.

The default cascade modes available for the default-cascade attribute (and indeed for
the cascade attributes in all other elements) are

create, merge, delete, save-update, evict, replicate, lock, refresh

These correspond to the various possible changes in the lifestyle of the parent object.
When set (you can include combinations of them as comma-separated values), the relevant
changes to the parent will be cascaded to the relation. Typically, for example, you may want to
apply the save-update cascade option to a class that includes Set attributes, so that when new
persistent classes are added to these they will not have to be saved explicitly in the session.

There are also three special options:

all, delete-orphan, none

all and none specify, respectively, that all changes to the parent should be propagated to
the relation, and that none should. delete-orphan applies only to one-to-many associations,
and specifies that the relation should be deleted when it is no longer referenced by the parent.

The required order and cardinality of the child elements of hibernate-mapping are the
following:

(meta*,

typedef*,

import*,

(class | subclass | joined-subclass | union-subclass)*,
(query | sql-query)*,

filter-def*)

Throughout this book we have assumed that the mappings are defined in one mapping
file for each significant class that is to be mapped to the database. We suggest that you follow
this practice in general, but there are some exceptions to this rule. You may, for instance, find
it useful to place query and sql-query entries into an independent mapping class, particularly
when they do not fall clearly into the context of a single class.

CHAPTER 6 ©° CREATING MAPPINGS

THE ORDER AND CARDINALITY INFORMATION FROM THE DTD

The mapping files used by Hibernate have a great many elements and are somewhat self-referential. For
example, the component element permits you to include within it further component elements, and within
those, further component elements—and so on, ad infinitum.

While we do not quote exhaustively from the mapping file’s DTD document, we will sometimes quote
that part of it which specifies the permitted ordering and cardinality (number of occurrences) of the child ele-
ments of a given element.

The cardinality is expressed by a symbol after the end of the name of the element: * means “zero or more
occurrences,” ? means “zero or one occurrences,” and no trailing symbol means “exactly one occurrence.”

The elements can be grouped using brackets, and where the elements are interchangeable the vertical
bar | means “or.”

In practical terms, this allows us to tell from the order and cardinality information quoted for the
hibernate-mapping file that all of the elements immediately below it are, in fact, optional. We can also
see that there is no limit to the number of c1ass elements that you can include if you wish to.

You can look up this information in this format in the DTD for the mapping file for all the elements,
including the ones we have omitted from this chapter. You will also find within the DTD the specification of
which attributes are permitted to each element, the values they may take (where these are constrained), and
their default values where one is provided. We recommend that you look at the DTD for enlightenment when-
ever you are trying to work out if a specific mapping file should be syntactically valid.

The Class Element

The child element that you will use most often—indeed in nearly all of your mapping files—
will be <class>. As you have seen in earlier chapters, this is where we generally describe the
relationships between Java objects and database entities. The <class> element permits the
following attributes to be defined (see Table 6-3).

Table 6-3. The <class> Attributes

Attribute Values Default Description

abstract true, false false This flag should be set if the class
being mapped is abstract.

batch-size 1 This is the number of items that can
be batched together when retrieving
instances of the class by identifier.

catalog The database catalog against which
the queries should apply.

check SQL to create a multirow check
constraint for schema generation.

Continued

97

98

CHAPTER 6 © CREATING MAPPINGS

Table 6-3. Continued

Attribute Values Default

Description

discriminator-value

dynamic-insert true, false false

dynamic-update true, false false

entity-name

lazy true, false

mutable true, false true

name

optimistic-lock none, version, version
dirty, all

persister

polymorphism implicit, explicit implicit

proxy

rowid

A value used to distinguish between
otherwise identical subclasses of a
common type persisted to the same
table. is null and is not null are
permissible values. To distinguish
between a Cat and a Dog derivative
of the Mammal abstract class, you
might use discriminator values of
“C” and “D,” respectively.

If set to true, null columns will
also appear in generated INSERT
commands.

If set to true, unchanged columns
will also appear in generated UPDATE
commands.

The name of the entity to use in
place of the class name (therefore
required if dynamic mapping is
used).

Can be used to disable or enable
lazy fetching against the enclosing
mapping’s default.

Can be used to flag that a class
is mutable (allowing Hibernate
to make some performance
optimizations when dealing
with these classes).

The fully qualified Java name of the
class (or interface) that is to be made
persistent.

Specifies the optimistic locking
strategy to use. This applies at a class
level, but in Hibernate 3 can also be
specified (or overridden) at an
attribute level.

Allows a custom ClassPersister
object to be used when persisting
this class.

Determines how polymorphism is

to be used. The default implicit
behavior will return instances of the
class if superclasses or implemented
interfaces are named in the query,
and will return subclasses if the class
itself is named in the query.

Specifies a class or interface to use as
the proxy for lazy initialization.

Flags that row ids should be used
(a database implementation detail
allowing Hibernate to optimize
updates).

CHAPTER 6 © CREATING MAPPINGS

Attribute Values Default Description

schema Optionally overrides the schema
specified by the hibernate-mapping
element.

select-before-update true, false false If set to true, Hibernate will perform

a select before performing an update
to ensure that an update is actually
required (i.e., that columns have
been modified). While this is often
likely to be less efficient, it can
prevent database triggers from
being invoked unnecessarily.

subselect A subselect of the contents of the
underlying table. A class can only
use a subselect if it is immutable and
read-only (because the SQL defined
here cannot be reversed). Generally,
the use of a database view is
preferable.

table The table name associated with
the class (or, if unspecified, the
unqualified class name will be used).

where An arbitrary SQL where condition to
be used when retrieving objects of
this class from the table.

Many of these attributes in the class element are designed to support preexisting data-
base schemas. In practice, the name attribute is very often the only one set.
The required order and cardinality of the child elements of class are

(meta*,

subselect?,

cache?,

synchronize*,

(id | composite-id),

discriminator?,

(version | timestamp)?,

(property | many-to-one | one-to-one | component | dynamic-component |
properties | any | map | set | list | bag | idbag |
array | primitive-array | query-list)*,

((join*, subclass*) | joined-subclass* | union-subclass*),
loader?,

sql-insert?,

sql-update?,

sql-delete?,

filter*)

99

100 CHAPTER 6 © CREATING MAPPINGS

The Id Element

All entities need to define their primary key in some way. Any class directly defined by the
class element (not derived or component classes) must therefore have an id or composite-id
element to define this (see Table 6-4). Note that while it is not a requirement that your class
implementation itself should implement the primary key attribute, it is certainly advisable. If
you cannot alter your class design to accommodate this, however, then the session provides
the getIdentifier() method to determine the identifier of a persistent class independently.

Table 6-4. The <id> Attributes

Attribute Values Default Description

access How the properties should be accessed: field (directly),
property (calling the get/set methods), or the name of
a PropertyAccessor class to be used. The value from
the hibernate-mapping will be inherited if this is not
specified.

column The name of the column in the table containing the
primary key. The value given in the name attribute will
be used if this is not specified.

length The column length to be used.

name The name of the attribute in the class representing this
primary key. If this is omitted, it is assumed that the
class does not have an attribute directly representing
this primary key. Naturally, the column attribute must
be provided if the name attribute is omitted.

type The Hibernate type of the column.

unsaved-value The value that the attribute should take when an
instance of the class has been created, but not yet per-
sisted to the database. This attribute is mandatory.

The <id> element requires a <generator> element to be specified, which defines how to
generate a new primary key for a new instance of the class. The generator takes a class attrib-
ute, which defines the mechanism to be used. The class should be an implementation of
IdentifierGenerator. Optional <param> elements can be provided if the identifier needs addi-
tional configuration information, each having the form as follows:

<param name="parameter name">parameter value</param>
Hibernate provides several default IdentifierGenerator implementations, and these can

be referenced by convenient short names, as shown in Table 6-5.

Table 6-5. The Default IdentiferGenerator Implementations

Short Name Description

guid Uses a database-generated “Globally” Unique identifier. This is not portable to
databases that do not have a guid type, and the specific implementation, and
hence the quality of the uniqueness of this key, may vary from vendor to vendor.

hilo Uses a database table and column to efficiently and portably maintain and
generate identifiers that are unique to that database. The Hibernate int, short,
or long types are supported.

CHAPTER 6 ©© CREATING MAPPINGS

Short Name Description

identity Supports the identity column type available in some, but not all, databases. This
is, therefore, not a fully portable option. The Hibernate int, short, or long types
are supported.

increment Generated by adding 1 to the current highest key value. Can apply to int, short,
or long hibernate types. This only works if other processes are not permitted
to update the table at the same time. If multiple processes are running, then
depending on the constraints enforced by the database the result will be an
error in the application(s) or data corruption!

native Selects one of sequence, identity, and hilo as appropriate. This is a good
compromise option since it uses the innate features of the database and is
portable to most platforms. This is particularly appropriate if your code is
likely to be deployed to a number of database implementations with differing
capabilities.

seghilo Where the dialect supports database sequences, this uses a sequence to
efficiently (but not portably) generate identifiers that are unique to that
database. The Hibernate int, short, or long types are supported.

sequence Supports the sequence column type (essentially a database-enforced increment)
available in some, but not all, databases. This is, therefore, not a fully portable
option. The Hibernate int, short, or long types are supported.

uuid Attempts to portably generate a (cross-database) unique primary key. The key is
composed of the local IP address, the startup time of the JVM (accurate to a quar-
ter second), the system time, and a counter value (unique within the JVM). This
cannot guarantee absolutely that a given key is unique, but it will be good enough
for most clustering purposes.

The child elements of the <id> element are as follows:
(meta*, column*, generator?)
While this is all rather complex, Listing 6-1 shows a typical <id> element from Chapter 3
illustrating the simplicity of the usual case.
Listing 6-1. A Typical <id> Element

<id name="id" type="long" column="id">
<generator class="native"/>
</id>

Note Where the <id> element cannot be defined, a compound key can instead be defined using the
<composite-id> element. This is provided purely to support existing database schemas. A new Hibernate
project with a clean database design does not require this. We will look at connecting to legacy databases in
more depth in Chapter 13.

101

102

CHAPTER 6

The Property Element

CREATING MAPPINGS

While it is not absolutely essential, almost all classes will also maintain a set of properties in
the database in addition to the primary key. These are defined by <property> elements (see

Table 6-6).

Table 6-6. The <property> Attributes

Attribute

Values

Default

Description

access

column

formula

index

insert

lazy

length

name
not-null
optimistic-lock
precision

scale

type

unique

update

true, false

true, false

true, false

true, false

true, false

true, false

true

false

false

true

false

true

How the properties should be accessed:
field (directly), property (calling the get/set
methods), or the name of a PropertyAccessor
class to be used. The value from the class, or
hibernate-mapping, will be inherited if this is
not specified.

The column in which the property will be
maintained. If omitted this will default to the
name of the attriute—or it can be specified
with nested column elements (see Listing 6-2).

An arbitrary SQL query representing a
computed property (i.e., one which is calculated
dynamically, rather than being represented in a
column).

The name of an index maintained for this
column.

Specifies whether creation of an instance of the
class should result in the column associated
with this attribute being included in insert
statements.

Defines whether lazy instantiation is used by
default for this column.

The column length to be used.

The (mandatory) name of the attribute. This
should start with a lowercase letter.

Specifies if the column is permitted to contain
null values.

Determines if optimistic locking should be used
when the attribute has been updated.

Allows the precision to be specified for numeric
data (the number of digits).

Allows the scale to be specified for numeric data
(the number of digits to the right of the decimal
point).

The Hibernate type of the column.

Indicates if duplicate values are permitted for
this column/attribute.

Specifies whether changes to this attribute in
instances of the class should result in the col-
umn associated with this attribute being
included in update statements.

CHAPTER 6 © CREATING MAPPINGS

The child elements of the property element are as follows:
(meta*, (column | formula)*, type?)

Any element accepting a column attribute, as is the case for the property element, will also
accept column elements in its place. For example, see Listing 6-2.

Listing 6-2. Using the <column> Element

<property name="message"/>
<column name="message" type="string"/>
</property>

This particular example does not really give us anything over and above the use of the
column attribute directly, but the column element comes into its own with custom types and the
use of some of the more complex mappings that we will be looking into later in the chapter.

The Component Element

The component element is used to map classes that will be represented as extra columns within
a table describing some other class. We have already discussed how components fitin as a
compromise between full entity types and mere value types.

The <component> element can take the attributes listed in Table 6-7.

Table 6-7. The <component> Attributes

Attribute Values Default Description

access How the properties should be accessed: field
(directly), property (calling the get/set
methods), or the name of a PropertyAccessor
class to be used.

class The class that the parent class incorporates by
composition.
insert true, false true Specifies whether creation of an instance of the

class should result in the column associated
with this attribute being included in insert

statements.

lazy true, false false Defines whether lazy instantiation is used by
default for this mapped entity.

name The name of the attribute (component) to be
persisted.

optimistic-lock true, false true Specifies the optimistic locking strategy to use.

unique true, false false An indication that the values that represent the

component must be unique within the table.

update true, false true Specifies whether changes to this attribute in
instances of the class should result in the column
associated with this attribute being included in
update statements.

103

104

CHAPTER 6 © CREATING MAPPINGS

The child elements of the component element are as follows:

(meta*,
parent?,
(property | many-to-one | one-to-one |
component | dynamic-component | any |
map | set | list | bag |
array | primitive-array)*)

We provide a full example of the use of the component element in the “Mapping Composi-
tion” section later in this chapter.

The One-to-One Element

The one-to-one element expresses the relationship between two classes where each instance
of the first class is related to a single instance of the second and vice versa. Such a one-to-one
relationship can be expressed either by giving each of the respective tables the same primary
key values, or by using a foreign key constraint from one table onto a unique identifier column
of the other. Table 6-8 shows the attributes that apply to the one-to-one element.

Table 6-8. The <one-to-one> Attributes

Attribute Values Default Description

access Specifies how the class member should be
accessed: field for direct field access, or
attribute for access via the get and set
methods.

batch-size When in lazy-load mode, this specifies the
number of occurrences to acquire in each
access.

cascade Determines how changes to the parent
entity will affect the linked relation.

catalog The database catalog against which queries
should apply.

check SQL to create a multirow check constraint
for schema generation.

fetch join, select, The mode in which the element will be
subselect retrieved (outer-join, a series of selects,
or a series of subselects). Only one
member of the enclosing class can be
retrieved by outer-join.

inverse true, false false Specifies that this entity is the opposite
navigable end of a relationship expressed
in another entity’s mapping.

lazy true, false Overrides the entity loading mode.

name Assigns a name to the entity (required in
dynamic mappings).

optimistic-lock true, false true Specifies whether optimistic locking should
be used.

CHAPTER 6 © CREATING MAPPINGS

Attribute Values Default Description

outer-join true, false, auto Specifies whether an outer-join should be
used.

persister Specifies a custom ClassPersister class

that can be used to override Hibernate’s
default handling of object persistence.
You would not normally use this facility.

schema The database schema against which
queries should apply
subselect A subselect of the contents of the

underlying table. A class can only use a
subselect if it is immutable and read-only
(because the SQL defined here cannot be
reversed). Generally, the use of a database
view is preferable.

table The name of the table in which the
associated entity is stored.

where An arbitrary SQL where clause limiting the
linked entities.

You would select a primary key association when you do not want an additional table col-
umn to relate the two entities. The “master” of the two entites takes a normal primary key
generator and its one-to-one mapping entry will typically have the attribute name and associ-
ated class specified only. The “slave” entity will be mapped similarly, but must have the
constrained attribute setting applied to ensure that the relationship is recognized.

Because the slave class’s primary key must be identical to that allocated to the master, it
is given the special id generator type of foreign. On the slave end, the id and one-to-one ele-
ments will, therefore, look like this:

<id name="id" column="product">
<generator class="foreign">
<param name="property">campaign</param>
</generator>
</id>

<one-to-one name="campaign"
class="com.hibernatebook.chaptero6.Campaign"
constrained="true"/>

There are some limitations to this approach: it cannot be used on the receiving end of a
many-to-one relationship (even when the many end of the association is limited by a unique
constraint), and the slave entity cannot be the slave of more than one entity.

In these circumstances, you will need to declare the master end of the association as a
uniquely constrained one-to-many association. The slave entity’s table will then need to take a
foreign key column associating it with the master’s primary key, and the property-ref attrib-
ute setting is used to declare this relationship, like so:

105

106 CHAPTER 6 © CREATING MAPPINGS

<one-to-one
name="campaign"
class="com.hibernatebook.chaptero6.Campaign"
property-ref="product"/>

The format used in this example is the most common. The body of the element consists of
an infrequently used optional element:

(meta* | formula*)

We discuss the many-to-many element and the alternative approach of composition in
some detail in the “Mapping Collections” section later in this chapter.

The Many-to-One Element

The many-to-many association describes the relationship where multiple instances of this one
class can reference a single instance of another class. This enforces a relational rule where
the “many” class has a foreign key into the (usually primary) unique key of the “one” class.
Table 6-9 shows the attributes permissible for the many-to-one element.

Table 6-9. The <many-to-one> Attributes

Attribute Values Default Description

access Specifies how the class member should
be accessed: field for direct field
access, or attribute for access via the
get and set methods.

cascade Determines how changes to the parent
entity will affect the linked relation.

class The property type of the attribute or
field (if omitted this will be determined
by reflection).

column The column containing the identifier of

the target entity (i.e., the foreign key
from this entity into the mapped one).

entity-name The name of the associated entity.

fetch join, select The mode in which the element will be
retrieved (outer-join, a series of
selects, or a series of subselects). Only
one member of the enclosing class can
be retrieved by outer-join.

foreign-key The name of the foreign key constraint
to generate for this association.

formula An arbitrary SQL expression to use in
place of the normal primary key rela-
tionship between the entities.

index The column which will specify the
ordering of these entities when
retrieved by the inverse of this map-

ping.

CHAPTER 6 © CREATING MAPPINGS

Attribute

Values

Default

Description

insert

lazy

name

not-found

not-null
optimistic-lock
outer-join

property-ref

unique

update

true, false

true, false

exception, ignore

true, false
true, false

true, false, auto

true, false

true, false

true

false

exception

false

true

false

true

When set to false, this prevents inserts
if the field has already been mapped as
part of a composite identifier or some
other attribute.

Overrides the entity loading mode.

The (mandatory) name of the attribute.
This should start with a lowercase letter.

The behavior to exhibit if the related
entity does not exist—either throw an
exception, or ignore the problem.

Specifies whether a not-null constraint
should be applied to this column.

Specifies whether optimistic locking
should be used.

Specifies whether an outer-join should
be used.

If the referenced table’s foreign key

is not onto the primary key of the

many end of the relationship, then
property-ref can be used to specify the
table that it references. This should only
be the case for legacy designs—when
creating a new schema, your foreign
keys should always reference the pri-
mary key of the related table.

Specifies whether a unique constraint
should be applied to this column.

When set to false, this prevents
updates if the field has already been
mapped elsewhere.

By specifying a unique constraint on a many-to-one relationship, it is effectively converted
into a one-to-one relationship, and this is the more common form for that, both because it
results in a simpler mapping and because it requires less intrusive changes to the database
should it become desirable to relax the one-to-one association into a many-to-one. This is dis-
cussed in more depth in the “Mapping Other Associations” section later in this chapter.

This element has a small number of optional daughter elements—the column element will

be required when a composite key has to be specified:

(meta*, (column | formula)*)

The Collection Elements

These are the elements that are required for you to include an attribute in your class that rep-
resents any of the collection classes. For example, if you have an attribute of type Set, then you
will need to use a bag or set element to represent its relationship with the database.

107

108

CHAPTER 6 © CREATING MAPPINGS

Because of the simplicity of the object-oriented relationship involved, where one object
has an attribute capable of containing many objects, it is a common fallacy to assume that the
relationship must be expressed as a one-to-many. In practice, however, this will almost always
be easiest to express as a many-to-many relationship, where an additional link table closely cor-
responds with the role of the collection itself. See the “Mapping Collections” section later in

this chapter for a more detailed illustration of this.

All of the collection mapping elements share the attributes shown in Table 6-10.

Table 6-10. The Attributes Common to the Collection Elements

Attribute Values Default

Description

access

batch-size

cascade
catalog
check

fetch join, select,
subselect

lazy true, false

name
optimistic-lock true, false true
outer-join true, false, auto
persister

schema

subselect

Specifies how the class member should be
accessed: field for direct field access, or
attribute for access via the get and set
methods.

This number of items can be batched
together when retrieving instances of the
class by identifier.

Determines how changes to the parent
entity will affect the linked relation.

The database catalog against which the
queries should apply.

SQL to create a multirow check constraint
for schema generation.

The mode in which the element will

be retrieved (outer-join, a series of
selects, or a series of subselects). Only
one member of the enclosing class can be
retrieved by outer-join.

Can be used to disable or enable
lazy fetching against the enclosing
mapping’s default.

The (mandatory) name of the attribute.
This should start with a lowercase letter.

Specifies the optimistic locking strategy to
use.

Specifies whether an outer-join should be
used.

Allows a custom ClassPersister object to
be used when persisting this class.

The database schema against which
queries should apply.

A subselect of the contents of the
underlying table. A class can only use a
subselect if it is immutable and read-only
(because the SQL defined here cannot be
reversed). Generally, the use of a database
view is preferable.

CHAPTER 6 © CREATING MAPPINGS

Attribute Values Default Description

table The name of the table in which the
associated entity is stored.

where An arbitrary SQL where clause limiting the
linked entities.

Set

A set collection allows collection attributes derived from the Set interface to be persisted.
In addition to the common collection mappings, the set element offers the inverse,
order-by, and sort attributes, as shown in Table 6-11.

Table 6-11. The Additional <set> Attributes

Attribute Values Default Description

inverse true, false false Specifies that this entity is the opposite navigable
end of a relationship expressed in another entity’s
mapping.

order-by Specifies an arbitrary SQL order by clause to constrain

the results returned by the SQL query that populates
the Set.

sort Specifies the Collection class sorting to be used.
The value can be unsorted, natural, or any Comparator
class.

The child elements of the set element are as follows:

(meta*,

subselect?,

cache?,

synchronize*,

key,

(element | one-to-many | many-to-many |
composite-element | many-to-any),
loader?,

sql-insert?,

sql-update?,

sql-delete?,

sql-delete-all?,

filter*)

A typical implementation of a set mapping is

<set name="set" table="nameset">

<key column="fooid"/>

<element type="string" column="name" not-null="true"/>
</set>

109

110

CHAPTER 6 © CREATING MAPPINGS

List
A list collection allows collection attributes derived from the List interface to be persisted.

In addition to the common collection mappings, the list element offers the inverse
attribute, as seen in Table 6-12.

Table 6-12. The Additional <list> Attributes

Attribute Values Default Description

inverse true, false false Specifies that this entity is the opposite navigable end of
arelationship expressed in another entity’s mapping.

The child elements of the 1ist element are as follows:

(meta*,

subselect?,

cache?,

synchronize*,

key,

(index | list-index),

(element | one-to-many | many-to-many |
composite-element | many-to-any),
loader?,

sql-insert?,

sql-update?,

sql-delete?,

sql-delete-all?,

filter*)

A typical implementation of a 1ist mapping is

<list name="list" table="namelist">

<key column="fooid"/>

<index column="position"/>

<element type="string" column="name" not-null="true"/>
</list>

Idbag

An idbag collection allows collection attributes derived from the List interface. A bag data
structure permits unordered storage of unordered items and permits duplicates. Because

the collection classes do not provide a native bag implementation, List tends to be used as a
substitute. The imposition of ordering imposed by a 1ist is not of itself a problem, but imple-
mentation code can become dependent upon the ordering information.

The idbag usually maps to a List, but by managing its database representation with a
surrogate key, the performance of updates and deletions of items in the idbag is made dramat-
ically better than the unkeyed bag (described at the end of this section). Hibernate does not
provide a mechanism for identifying the identifier of a row in the bag.

CHAPTER 6 © CREATING MAPPINGS

In addition to the common collection mappings, the idbag element offers the order-by
element, as seen in Table 6-13.

Table 6-13. The Additional <idbag> Attribute

Attribute Values Default Description

order-by Specifies an arbitrary SQL order by clause to constrain the
results returned by the SQL query that populates the collection.

The child elements of the idbag element are as follows:

(meta*,

subselect?,

cache?,

synchronize*,
collection-id,

key,

(element | many-to-many |
composite-element | many-to-any),
loader?,

sql-insert?,

sql-update?,

sql-delete?,
sql-delete-all?,

filter*)

A typical implementation of an idbag mapping is

<idbag name="idbag" table="nameidbag">
<collection-id column="id" type="int">
<generator class="native"/>
</collection-id>

<key column="fooid"/>
<element type="string" column="name" not-null="true"/>
</idbag>

Map

A map collection allows collection attributes derived from the Map interface to be persisted.
In addition to the common collection mappings, the bag element offers the inverse,
order-by, and sort attributes, as seen in Table 6-14.

111

112

CHAPTER 6 © CREATING MAPPINGS

Table 6-14. The Additional <map> Attributes

Attribute Values Default Description

inverse true, false false Specifies that this entity is the opposite navigable end of
arelationship expressed in another entity’s mapping.

order-by Specifies an arbitrary SQL order by clause to constrain
the results returned by the SQL query that populates the
map.

sort Specifies the Collection class sorting to be used. The

value can be unsorted, natural, or any Comparator class.

The child elements of the map element are as follows:

(meta*,

subselect?,

cache?,

synchronize*,

key,

(map-key | composite-map-key | map-key-many-to-many |
index | composite-index | index-many-to-many |
index-many-to-any),

(element | one-to-many | many-to-many | composite-element |
many-to-any),

loader?,

sql-insert?,

sql-update?,

sql-delete?,

sql-delete-all?,

filter*)

A typical implementation of the mapping is

<map name="map" table="namemap">

<key column="fooid"/>

<index column="name" type="string"/>

<element column="value" type="string" not-null="true"/>
</map>

Bag

If your class represents data as a List, but you do not want to maintain an index column to
keep track of the order of items, you can optionally use a bag object to achieve this. The order
in which the items are stored and retrieved from a bag is completely ignored.

Although the bag’s table does not contain enough information to determine the order
of its contents prior to persistence into the table, it is possible to apply an order by clause to
the SQL used to obtain the contents of the bag so that it has a natural sorted order as it is
acquired. This will not be honored at other times during the lifetime of the object.

There is a performance impact to the lack of a proper key for the bag elements, and this
will manifest itself when performing update or delete operations on the contents of the bag.

CHAPTER 6 ©© CREATING MAPPINGS

In addition to the common collection mappings, the bag element, therefore, offers the
order-by as well as the inverse attribute, as seen in Table 6-15.

Table 6-15. The Additional <bag> Attributes

Attribute Values Default Description

inverse true, false false Specifies that this entity is the opposite navigable end of
arelationship expressed in another entity’s mapping.

order-by Specifies an arbitrary SQL order by clause to constrain
the results returned by the SQL query that populates the
collection.

The child elements of the bag element are as follows:

(meta*,

subselect?,

cache?,

synchronize*,

key,

(element | one-to-many | many-to-many |
composite-element | many-to-any),
loader?,

sql-insert?,

sql-update?,

sql-delete?,

sql-delete-all?,

filter*)

A typical implementation of a bag mapping is

<bag name="bag" table="namebag">

<key column="fooid"/>

<element column="value" type="string" not-null="true"/>
</bag>

Mapping Simple Classes

Figure 6-1 shows the class diagram and entity relationship diagram for a simple class. They are
as straightforward as you would expect.

User
User .
: PK |id
+id -
+username
username

Figure 6-1. Representing a simple class

113

114 CHAPTER 6 © CREATING MAPPINGS

The elements that we have discussed so far are sufficient to map a basic class into a single
table, as shown on Listing 6-3.

Listing 6-3. A Simple Class to Represent a User

package com.hibernatebook.chaptero6;
public class User {

public User(String username) {
this.username = username;

}

User() {
}

public int getId() {
return id;

}

public String getUsername() {
return username;

}

public void setId(int id) {
this.id = id;
}

public void setUsername(String username) {
this.username = username;

}

// We will map the id to the table’s primary key
private int id = -1;

// We will map the username into a column in the table
private String username;

It’s pretty easy to see that we might want to represent the class in Listing 6-3 in a table
with the following format (see Table 6-16).

Table 6-16. Mapping a Simple Class to a Simple Table

Column Type

Id Integer

Username Varchar(32)

CHAPTER 6 ©© CREATING MAPPINGS

The mapping between the two is, thus, similarly straightforward:

<?xml version='1.0"' encoding="utf-8'?>

<IDOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
<class name="book.hibernatebook.chaptero6.User">

<id name="1id" type="int">
<generator class="native"/>
</id>

<property name="username" type="string" length="32"/>

</class>
</hibernate-mapping>

Aside from the very limited number of properties maintained by the class, this is a pretty
common mapping type, so it is reassuring to see that it can be managed with a minimal
number of elements (<hibernate-mapping>, <class>, <id>, <generator>, and <property>).

Mapping Composition
Figure 6-2 shows the class diagram and the entity relationship diagram for a composition rela-

tionship between two classes. Here the Advert class is composed of a Picture class in addition
to its normal value types.

Advert
Advert Picture PK |id
+id +caption .
+itle -~ [] ; +filename title
+content] content
+picture picturecaption
picturefilename

Figure 6-2. Representing composition

Composition is the strongest form of aggregation—in which the lifecycle of each object
is dependent upon the lifecycle of the whole. Although Java does not make the distinction
between other types of aggregation and composition, it becomes relevant when we choose to
store the components in the database, because the most efficient and natural way to do this is
to store them in the same table.

115

116

CHAPTER 6 © CREATING MAPPINGS

In our example, we will look at an Advert class that has this relationship with a Picture
class. The idea is that our Advert is always going to be associated with an i1lustration (see
Listings 6-4 and 6-5). In these circumstances, there is a clear 1:1 relationship that could be
represented between two distinct tables, but which is more efficiently represented with one.

Listing 6-4. The Class Representing the Illustration

package com.hibernatebook.chaptero6;

public class Picture {
public Picture(String caption, String filename) {
this.caption = caption;
this.filename = filename;

}

Picture() {
}

public String getCaption() {
return this.caption;

}

public String getFilename() {
return this.filename;

}

public void setCaption(String title) {
this.caption = title;
}

public void setFilename(String filename) {
this.filename = filename;

}

private String caption;
private String filename;

Listing 6-5. The Class Representing the Advert

package com.hibernatebook.chaptero6;

public class Advert {
public Advert(String title, String content, Picture picture) {
this.title = title;
this.content = content;
this.picture = picture;

}

CHAPTER 6 © CREATING MAPPINGS 117

Advert() {
}

public int getId() {
return id;

}

public String getTitle() {
return this.title;

}

public String getContent() {
return this.content;

}

public Picture getPicture() {
return this.picture;

}

public void setId(int id) {
this.id = id;
}

public void setTitle(String title) {
this.title = title;
}

public void setContent(String content) {
this.content = content;

}

public void setPicture(Picture picture) {
this.picture = picture;

}

private int id = -1;
private String title;
private String content;
private Picture picture;

Again, Hibernate manages to express this simple relationship with a correspondingly sim-
ple mapping file. We introduce the component entity for this association. Here it is in use:

<?xml version='1.0" encoding="utf-8'?>

<IDOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

118 CHAPTER 6 © CREATING MAPPINGS
<class name="com.hibernatebook.chapter0o6.Advert">
<id name="id" type="int">
<generator class="native"/>
</id>
<property name="title" type="string" length="255"/>
<property name="content" type="text"/>
<component name="picture" class="com.hibernatebook.chaptero6.Picture”>
<property name="caption" type="string" length="255"/>
<property name="filename" type="string" length="32"/>
</component>
</class>
In our example, we use the <property> element to describe the relationship between the
Picture and its attributes. In fact, this is true of all of the rest of the elements of <class>—a
<component> element can even contain more <component> elements. Of course, this makes per-
fect sense, since a component usually corresponds with a Java class.
Mapping Other Associations
In Figure 6-3, the Advert class includes an instance of a Picture class. The relationship in the
tables is represented with the Picture table having a foreign key onto the Advert table.
Advert
PK,FK1 |id Picture
Advert Picture —
+id +caption title < PK |id
+itle -~ [15 +filename content
+content 1 FK1 | advert
+picture caption
filename

Figure 6-3. Mapping an aggregation or composition relationship

A one-to-one correspondence does not absolutely require you to incorporate both parties
into the same table. There are often good reasons not to. For example, in our Picture example,
it is entirely possible that while the initial implementation will permit only one Picture per
Advert, a future implementation will relax this relationship. Consider this scenario from the
perspective of the database for a moment (see Table 6-17).

Table 6-17. The Advert Table

Id Title Contents PictureCaption PictureFilename
1 Bike Bicycle for sale My bike (you canride itif youlike) advertoo1.jpg
Sofa Sofa, comfy butused Chesterfield Sofa advert002.jpg

Car Shabby MGF forsale = MGF VVC (BRG) advert003. jpg

CHAPTER 6 © CREATING MAPPINGS

If we want to allow the advert for the sofa to include another picture, we would have to
duplicate some of the data, or include null columns. What would probably be preferable is to
set up a pair of tables, one to represent the adverts, and a one to represent the distinct tables
(as shown in Tables 6-18 and 6-19).

Table 6-18. The Refined Advert Table

Id Title Contents

1 Bike Bicycle for sale

2 Sofa Sofa, comfy but used
Car Shabby MGF for sale

Table 6-19. The Picture Table

Id Advert Caption Filename

1 1 My bike (you canride it if you like) ~ advertooi.jpg
2 2 Chesterfield Sofa advert002.jpg
3 3 MGF VVC (BRG) advert003.jpg

If we decide (considering the database only) to allow additional pictures, we can then
include extra rows in the Picture table without duplicating any data unnecessarily (see
Table 6-20).

Table 6-20. The Picture Table with Multiple Pictures per Advert

Id Advert Caption Filename

1 1 My bike (you can ride it if you like) advertoo1.jpg
2 2 Chesterfield Sofa advert002.jpg
3 2 Back of Sofa advert003. jpg
4 3 MGF VVC (BRG) adverto04. jpg

With the single Advert table, the query to extract the data necessary to materialize an
instance of the Advert consists of something like this:

select id,title,contents,picturecaption,picturefilename from advert where id = 1

It is obvious here that a single row will be returned, since we are carrying out the selection
on the primary key.
Once we split things into two tables, we have a slightly more ambiguous pair of queries:

select id,title,contents from advert where id = 1
select id,caption,filename from picture where advert = 1

While Hibernate is not under any particular obligation to use this pair of SQL instructions
to retrieve the data (it could reduce it to a join on the table pair), it is the easiest way of thinking

119

120

CHAPTER 6 © CREATING MAPPINGS

about the data we are going to retrieve. While the first query of the two is required to return a
single row, this is not true for the second query—if we have added multiple pictures, we will
get multiple rows back.

In these circumstances, there is very little difference between the one-to-one relationship
and a one-to-many relationship, except from a business perspective. That is to say, we don't
associate an advert with multiple pictures because we choose not to, not because we cannot.

This, perhaps, explains why the expression of a one-to-one relationship in Hibernate is
usually carried out via a many-to-one mapping. If you do not find that persuasive, remember
that a foreign key relationship, which is the relationship that the advert column in the picture
table has with the id column in the advert table, is a M:1 relationship between the entities.

In our example, the Picture table will be maintaining the “advert” column as a foreign key
into the Advert table, so this must be expressed as a many-to-one relationship with the Advert
object (see Listing 6-6).

Listing 6-6. The New Picture Mapping

<?xml version='1.0"' encoding="utf-8'?>

<IDOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<class name="com.hibernatebook.chaptero6.Picture">
<id name="id" type="int">
<generator class="native"/>
</id>
<many-to-one
name="advert"
class="com.hibernatebook.chaptero6.Advert"
column="advert"/>
<property name="caption" type="string" length="255"/>
<property name="filename" type="string" length="32"/>
</class>

If you still object to the many-to-one relationship, you will probably find it cathartic to
note that we have explicitly constrained this relationship with the “unique” attribute. You will
also find it reassuring that in order to make navigation possible directly from the Advert to
its associated Picture, we can in fact use a one-to-one mapping entry. We need to be able to
navigate in this direction because we expect to retrieve adverts from the database, and then
display their associated pictures (see Listing 6-7).

Listing 6-7. The Revised Advert Mapping

<?xml version='1.0" encoding="utf-8'?>

<IDOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<class name="com.hibernatebook.chaptero6.Advert">

<id name="id" type="int">

<generator class="native"/>

</id>

<property name="title" type="string" length="255"/>

<property name="content" type="text"/>

<one-to-one name="picture"

CHAPTER 6

class="com.hibernatebook.chaptero6.Picture"
property-ref="picture">

</class>

CREATING MAPPINGS

Now that we have seen how one-to-one and many-to-one relationships are expressed, we

will see how a many-to-many relationship can be expressed.

Mapping Collections

In Figure 6-4, we show the User objects as having an unknown number of Advert instances. In

the database, this is then represented with three tables, one of which is a link table between

the two entity tables.

User

Advert

+id ’_,% +id

+adverts 1 0.*

User_Advert_Link

Figure 6-4. Mapping collections

User
PK |id
PK |id |« —
FK1 | userid
FK2 | advertid

Y

The Java Collection classes provide the most elegant mechanism for expressing the many
end of a many-to-many relationship in our own classes:

public Set getAdverts();

If we use generics, we can give an even more precise speecification:

public Set<Advert> getAdverts();

121
Advert
PK |id

Note A lot of legacy code will not use generics. However, if you have the opportunity you should do so,

as it allows you to make this sort of distinction clear at the API level, instead of at the documentation level.
Hibernate 3 is compatible with Java 5 Generics.

Of course we can place values (of Object type) into collections as well as entities, and
Java 5 introduced autoboxing so that we have the illusion of being able to place primitives into

them as well:

122

CHAPTER 6 © CREATING MAPPINGS

List<Integer> ages = getAges();
int first = ages.get(0);

The only catch with collection mapping is that an additional table is required to correctly
express the relationship between the owning table and the collection. Here is how it should be
done; the entity table contains only its own attributes (see Table 6-21).

Table 6-21. EntityTable

Id Name
1 Entity 1

while a separate collection table contains the actual values (see Table 6-22). In this case, we
are linking a List to the owning entity, so we need to include a column to represent the posi-
tion of the values in the list as well as the foreign key into the owning entity, and the column
for the actual values that are contained within the collection.

Table 6-22. ListTable

entityid positioninList listValue

1 1 Good

1 2 Bad

1 3 Indifferent

In a legacy schema, you may quite often encounter a situation where all of the values
have been retained within a single table (see Table 6-23).

Table 6-23. Entitylable

Id Name positioninList listValue

1 Entity 1 1 Good

1 Entity 1 2 Bad

1 Entity 1 3 Indifferent

However, it should be obvious that this is not just poor design from Hibernate’s perspec-
tive, but is also bad relational design; the values in the entity’s name attribute have been
duplicated needlessly, so this is not a properly normalized table. We also break the foreign key
of the table, and need to form a compound key of id and positionInList. Overall this is a poor
design and we encourage you to use a second table if this is at all possible. If you must work
with such an existing design, see Chapter 13 for some techniques for approaching this type of
problem.

If your collection is going to contain entity types instead of value types, the approach is
essentially the same, but your second table will contain keys into the second entity table
instead of value types. This changes the combination of tables into the situation shown in the
entity relationship diagram (see Figure 6-4) where we have a link table joining two major

CHAPTER 6 ©© CREATING MAPPINGS

tables into a many-to-many relationship. This is a very familiar pattern in properly normalized
relational schemas.

The following code represents a mapping of a Set attribute representing the Adverts with
which the User class is associated:

<set name="adverts"
table="user advert link"
cascade="save-update">
<key column="userid"/>
<many-to-many
class="com.hibernatebook.chapter0o6.Advert"
column="advertid"/>
</set>

Hibernate’s use of collections tends to expose the lazy-loading issues more than most
other mappings. If you enable lazy loading, the Collection that you retrieve from the session
will be a proxy implementing the relevant collection interface (in our example, Set) rather
than one of the usual Java concrete collection implementations.

This allows Hibernate to retrieve the contents of the collection only as they are required
by the user. If you load an entity, consult a single item from the collection, and then discard it,
often only a handful of SQL operations will be required. If the collection in question repre-
sents hundreds of entity instances, the performance advantages of lazy loading (compared
with the massive task of reading in all of the entities concerned) are massive.

However, you will need to be careful to ensure that you do not try to access the contents
of a lazily loaded collection at a time when it is no longer associated with the session unless
you can be certain that the entity that you are accessing has already been loaded.

Mapping Inheritance Relationships

In Figure 6-5, we show a simple class hierarchy. The superclass is Advert and there are two
classes derived from this: a Personal class to represent personal advertisements and a
Property class to represent property advertisements.

Advert
+id
+title
Personal Property
+dateOfBirth +state
+Sex +zipCode
+message +description

Figure 6-5. A simple inheritance hierarchy

123

124

CHAPTER 6 " CREATING MAPPINGS

Hibernate can represent inheritance relationships in a relational schema in three ways,
each mapped in a slightly different way. These are

* One table for each concrete class implementation
¢ One table for each subclass (including interfaces and abstract classes)
* One table for each class hierarchy

Each of these techniques has different costs and benefits, so we will show you an example
mapping from each and discuss some of these issues.

One Table per Concrete Class

This approach is the easiest to implement. You map each of the concrete classes as normal,
writing mapping elements for each of its persistent properties (including those that are
inherited). No mapping files are required for interfaces and abstract classes.

Figure 6-6 shows the schema required to represent the hierarchy from Figure 6-5 using
this technique.

Advert Personal Property
PK |id PK |id PK |id
title title title
dateOfBirth state
sex zipCode
message description

Figure 6-6. Mapping one table per concrete class

While this is easy to create, there are several disadvantages; the data belonging to a parent
class is scattered across a number of different tables, so a query couched in terms of the par-
ent class is likely to cause a large number of select operations. It also means that changes to a
parent class can touch an awful lot of tables. We suggest you file this approach under “quick
and dirty solutions.”

In Listing 6-8, we demonstrate how a derived class (Property) can be mapped to a single
table independently of its superclass (Advert).

Listing 6-8. Mapping a Property Advert with the One Table per Concrete Class Approach

<hibernate-mapping>
<class name="com.hibernatebook.chaptero6.Property">
<id name="id" type="int">
<generator class="native"/>
</id>
<property name="title" type="string" length="255"/>

CHAPTER 6 ©© CREATING MAPPINGS

<property name="state" type="string"/>
<property name="zipCode" type="string"/>
<property name="description" type="string"/>
</class>
</hibernate-mapping>

One Table per Subclass

A slightly more complex mapping is to provide one table for each class in the hierarchy,
including the abstract and interface classes. The pure is-a relationship of our class hierarchy
is then converted into a has-a relationship for each entity in the schema.

Figure 6-7 shows the schema required to represent the hierarchy from Figure 6-5 using
this technique.

Advert
PK |id |¢
title
A
Personal Property
PK,FK1 | id PK,FK1 | id
dateOfBirth state
sex zipCode
message description

Figure 6-7. Mapping one table per subclass

We like this approach as it is conceptually easy to manage, does not require complex
changes to the schema when a single parent class is modified, and is similar to how most
JVM manage the same data behind the scenes.

The disadvantage of this approach is that while it works well from an object-oriented
point of view, and is correct from a relational point of view, it can result in poor performance.
As the hierarchy grows, the number of joins required to construct a leaf class also grows.

The technique works well for shallow inheritance hierarchies. Deep inheritance hierar-
chies are often a symptom of poorly designed code, so you may want to reconsider your
application architecture before abandoning this technique. In our opinion, it should be pre-
ferred until performance issues are substantially proven to be an issue.

In Listing 6-9, we show how you can map a derived class (Property) as a table joined to
another representing the superclass (Advert).

125

126 CHAPTER 6 " CREATING MAPPINGS

Listing 6-9. Mapping a Property Advert with the One Table per Subclass Approach

<hibernate-mapping>
<joined-subclass
name="com.hibernatebook.chaptero6.Property"
extends="com.hibernatebook.chaptero6.Advert">

<key column="advertid"/»>

<property name="state" type="string"/>
<property name="zipCode" type="string"/»>
<property name="description" type="string"/>
</joined-subclass>
</hibernate-mapping>

Note in the mapping that we replace class with joined-subclass to associate our map-
ping explicitly with the parent. You specify the entity that is being extended, and replace the
id and title classes from the subclass with a single key element that maps the foreign key
column to the parent class table’s primary key. Otherwise the joined-subclass element is vir-
tually identical to the class element. Note, however, that a joined-subclass cannot contain
subclass elements and vice versa—the two strategies are not compatible.

One Table per Class Hierarchy

The last of the inheritance mapping strategies is to place each inheritance hierarchy in its own
table. The fields from each of the child classes are added to this table, and a discriminator col-
umn contains a key to identify the base type represented by each row in the table.

Figure 6-8 shows the schema required to represent the hierarchy from Figure 6-5 using
this technique.

Advert

PK |id

title
advertType
dateOfBirth
sex
message
state
zipCode
description

Figure 6-8. Mapping one table per hierarchy

CHAPTER 6 © CREATING MAPPINGS

This technique offers the best performance—for simple queries on simple classes even in
the deepest of inheritance hierarchies, a single select may suffice to gather all of the fields to
populate the entity.

Conversely, this is not a satisfying representation of the Attribute. Changes to members
of the hierarchy will usually require a column to be altered, added, or deleted from the table.
This will often be a very slow operation. As the hierarchy grows (horizontally as well as verti-
cally), so too will the number of columns required by this table.

Each mapped subclass must specify the class that it extends and a value that can be used
to discriminate this subclass from the other classes held in the same table. Thus, this is known
as the discriminator value and mapped with a discriminator-value attribute in the subclass
element (see Listing 6-10).

Listing 6-10. Mapping a Property Advert with the Table per Class Hierarchy Approach

<hibernate-mapping>
<subclass
name="com.hibernatebook.chapter06.Property"
extends="com.hibernatebook.chaptero6.Advert"
discriminator-value="property">

<property name="state" type="string"/>
<property name="zipCode" type="string"/>
<property name="description" type="string"/>
</subclass>
</hibernate-mapping>

Note that this also requires the specification of a discriminator column for the root of the
class hierarchy, from which the discriminator values identifying the types of the child classes
can be obtained (see Listing 6-11).

Listing 6-11. The Addition to Advert.hbm.xml Required to Support a Table per
Class Hierarchy Approach
<discriminator column="advertType" type="string"/»>

A subclass mapping cannot contain joined-subclass elements and vice versa—the two
strategies are not compatible.

More Exotic Mappings

The Hibernate mapping DTD is large. We have discussed the core set of mappings that you
will use on a day-to-day basis, but before we move on we will take a very quick tour around
four of the more interesting remaining mapping types.

127

128

CHAPTER 6 © CREATING MAPPINGS

Any

The any tag represents a polymorphic association between the attribute and several entity
classes. The mapping is expressed in the schema with a column to specify the type of the
related entity, and then columns for the identifier of the related entity.

Because a proper foreign key cannot be specified (being dependent upon multiple
tables), this is not the generally recommended technique for making polymorphic associa-
tions. Where possible, prefer the techniques described in the previous “Mapping Inheritance
Relationships” section.

Array

The array tag represents the innate array feature of the Java language. The syntax of this is vir-
tually identical to that used for the List collection class, and we recommend the use of List
except where primitive values are to be stored, or where you are constrained by an existing
application architecture to work with arrays.

Join
The join mapping is a special type of one-to-one relationship, which allows you to combine
properties (rather than entities) of another table into your entity. A similar effect can be
achieved using views on databases that support writable views.

A new Hibernate 3 application will never have an absolute requirement for the join map-
ping, but we demonstrate in Chapter 13 how this can be of particular use when dealing with a
legacy database schema.

Dynamic Component

While the full blown dynamic class approach, which we discussed briefly in the “Entities” sec-
tion at the beginning of the chapter, is really only suitable for prototyping exercises, the
dynamic component allows some of that flexibility in a package that reflects some legitimate
techniques.

The dynamic-component element permits you to place any of the items that can be mapped
with the normal component element into a map with a given key. For example, we could obtain
and combine several items of information relating to an entity’s ownership into a single Map
with named elements:

<dynamic-component name="ownership">
<property name="user" type="string" column="user"/>
<many-to-one
name="person"
class="com.hibernatebook.chaptero6.Person”
column="person_id"/>
</dynamic-component>

The code to access this information in the entity is then very familiar:

Map map = entity.getOwnership();
System.out.println(map.get("user"));
System.out.println(map.get("person"));

CHAPTER 6 © CREATING MAPPINGS

The output would then be

dcminter
person: { "Dave Minter", 33, "5'10" }

Summary

In this chapter, we have looked at the data types supported by Hibernate 3: entities, values,
and components. We have seen how all three can be expressed in a mapping file and how each
relates to the underlying database schema. We have listed the attributes available to the major
mapping elements, and we looked at some detailed worked examples of the elements that you
will use most frequently when working with Hibernate.

In the next chapter, we will look at how subsets of the data mapped into the database can
be retrieved—which is, after all, the whole point of using a database in the first place.

129

CHAPTER 7

Querying Objects
with Criteria

In this chapter, we are going to discuss retrieving objects from the database using Hibernate’s
criteria query API. Hibernate provides three different ways to retrieve data: the criteria query
AP], the Hibernate Query Language (HQL), and native SQL queries. The criteria query API
provides a set of Java objects you can use to construct your queries. Hibernate provides its
own object query language, HQL, which allows you to use SQL-like syntax to retrieve objects
from the database. Lastly, Hibernate provides an API for using SQL directly against the data-
base, which allows you to use database-specific SQL that Hibernate does not support. We
discuss criteria in this chapter—in Chapter 8 we will cover HQL and SQL queries.

The criteria query API lets you build nested, structured query expressions in Java, provid-
ing a compile-time syntax checking that is not possible with a query language like HQL or
SQL. The criteria query API also includes Query By Example (QBE) functionality for supplying
example objects that contain the properties you would like to retrieve. In Hibernate 3, the
criteria query API also includes projection and aggregation methods, including count. In
Hibernate 2, you had to download a patch to the criteria query API to enable row counting.

Using the Criteria Query API

The easiest way to retrieve data with Hibernate is to use the criteria query API. Instead of
writing an SQL SELECT statement or an HQL statement, you can build up a query programmat-
ically. You can also use QBE to retrieve objects that match an object that you have partially
populated (we will discuss QBE in more detail further on in the chapter). The org.hibernate.
Criteria interface defines the available methods for one of these criteria query objects. The
Hibernate Session interface contains several createCriteria() methods. Pass the persistent
object’s class or its entity name to the createCriteria() method, and Hibernate will create a
Criteria object that returns instances of the persistence object’s class when your application
executes a criteria query.

The simplest example of a criteria query is one with no optional parameters or restric-
tions—the criteria query will simply return every object that corresponds to the class. We will
illustrate this criteria with an example, but we wanted to first introduce the sample applica-
tion we are using in this chapter, and the next chapter on HQL. The sample application has
three classes: Supplier, Product, and Software. The Supplier class (see Listing 7-1) has a name
property and a List collection of Product objects.

131

132 CHAPTER 7 =" QUERYING OBJECTS WITH CRITERIA

Listing 7-1. The Supplier Class

package com.hibernatebook.criteria;

import java.util.Arraylist;
import java.util.list;

public class Supplier

{
private int id;
private String name;
private List products = new ArraylList();
public int getId()
{
return id;
}
public void setId(int id)
{
this.id = id;
}
public String getName()
{
return name;
}
public void setName(String name)
{
this.name = name;
}
public List getProducts()
{
return products;
}
public void setProducts(List products)
{
this.products = products;
}
}

The Product class (see Listing 7-2) has name, price, and description properties, along with
a reference to its parent supplier.

Listing 7-2. The Product Class

package com.hibernatebook.criteria;

public class Product

{

CHAPTER 7 ©" QUERYING OBJECTS WITH CRITERIA 133
private int id;
private Supplier supplier;
private String name;
private String description;

private double price;

public Product()

{
super();
}
public Product(String name, String description, double price)
{
super ();
this.name = name;
this.description = description;
this.price = price;
}
public String getDescription()
{
return description;
}
public void setDescription(String description)
{
this.description = description;
}
public int getId()
{
return id;
}
public void setId(int id)
{
this.id = id;
}
public String getName()
{
return name;
}
public void setName(String name)
{
this.name = name;
}

public Supplier getSupplier()
{

134

CHAPTER 7 =" QUERYING OBJECTS WITH CRITERIA

return supplier;

}
public void setSupplier(Supplier supplier)
{
this.supplier = supplier;
}
public double getPrice()
{
return price;
}
public void setPrice(double price)
{
this.price = price;
}

The Software class (see Listing 7-3) extends the Product class and adds a version prop-

erty—we added this subclass so we could demonstrate polymorphism with Hibernate’s
queries.

Listing 7-3. The Software Class

package com.hibernatebook.criteria;

public class Software extends Product

{

private String version;

public Software()
{
super ();
}
public Software(String name, String description, double price, String version)
{
super(name, description, price);
this.setVersion(version);

}
public String getVersion()
{
return version;
}
public void setVersion(String version)
{
this.version = version;
}

CHAPTER 7 ©" QUERYING OBJECTS WITH CRITERIA

The Hibernate mapping files for these three classes are in the source directory for this book,
along with a test harness for populating the database and running these criteria examples.
The simplest way to use a criteria query is this:

Criteria crit = session.createCriteria(Product.class);
List results = crit.list();

We mentioned previously that we wanted to demonstrate polymorphism with Hibernate.
When you run this example with our sample data, you will get all objects that are instances of
the Product class—this includes any instances of the Software class.

Moving on from this simple example, we need to add constraints to our criteria queries so
we can winnow the result set down.

Using Restrictions with Criteria

The criteria query API makes it easy to use restrictions in your queries to selectively retrieve
objects; for instance, your application could retrieve only products with a price over 30. You
may add these restrictions to a criteria query object with the add() method on the Criteria
object. The add() method takes an org.hibernate.criterion.Criterion object that represents
an individual restriction. You can have more than one restriction for a criteria query.

Note In Hibernate 3, the org.hibernate.criterion.Restrictions class is the new name of the
net.sf.hibernate.expression.Expression class in Hibernate 2.1. In addition, the sq1() methods
on Expression are now sqlRestriction() onthe Restrictions class.

Although you could create your own objects that either implement the Criterion object
or extend an existing Criterion object, we recommend that you use Hibernate’s built-in
Criterion objects from your application’s business logic, rather than implementing your busi-
ness logic as Criterion objects. For instance, you could create your own factory class that
returned instances of Hibernate’s criterion objects set up for your application’s restrictions.

Use the factory methods on the org.hibernate.criterion.Restrictions class to obtain
instances of the Criterion objects. To retrieve objects that have a property value that equals
your restriction, use the eq() method on Restrictions:

public static SimpleExpression eq(String propertyName, Object value)

We would typically nest the eq() method in the add() method on the Criteria object.
Here is an example of how this would look if we were searching for products with the name
“Mouse”:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.eq("name", "Mouse"));
List results = crit.list()

135

136 CHAPTER 7 =" QUERYING OBJECTS WITH CRITERIA

Next, we could search for products that do not have the name “Mouse.” For this we would
use the ne() method on the Restrictions class to obtain a not-equal restriction:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.ne("name", "Mouse"));
List results = crit.list();

Tip You cannot use the not-equal restriction to retrieve records with a null value in the database for that
property. If you need to retrieve objects with null properties, you will have to use the isNull() restriction,
which we discuss further on in the chapter. You can combine the two with an OR logical expression, which
we also discuss later in the chapter.

Rather than search for just exact matches, we can also retrieve all objects that have a
property that matches part of a given pattern. We would need to create an SQL LIKE clause,
with either the like() method or the ilike() method. The ilike() method is case-insensitive.
In either case, we have two different ways to call the method:

public static SimpleExpression like(String propertyName, Object value)
public static SimpleExpression like(String propertyName, String value, ‘=
MatchMode matchMode)

The first like() or ilike() method takes a pattern for matching. Use the % character as a
wildcard to match parts of the string:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.like("name", "Mou%"));
List results = crit.list();

The second like() or ilike() method uses an org.hibernate.criterion.MatchMode
object to specify how to match the specified value to the stored data. The MatchMode object
(a type-safe enumeration) has four different matches:

* ANYWHERE: Any place in the string
e END: The end of the string

e EXACT: An exact match

e START: The beginning of the string

Here is an example that uses the ilike() method to search for case-insensitive matches at
the end of the string:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.ilike("name", "browser", MatchMode.END));
List results = crit.list();

The isNull() and isNotNull() restrictions allow you to do a search for objects that have
(or do not have) null property values. This is easy to demonstrate:

CHAPTER 7 ©" QUERYING OBJECTS WITH CRITERIA

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.isNull("name"));
List results = crit.list();

Several of the restrictions are useful for doing math comparisons. The greater than com-
parison is gt (), the greater than or equal to comparison is ge(), the less than comparison is
1t(), and the less than or equal to comparison is le(). We can do a quick retrieval of all prod-
ucts with prices over 25:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.gt("price",new Double(25.0)));
List results = crit.list();

Moving on, we can start to do more complicated queries with the criteria query API. If we
want to do logical expressions, we can combine AND and OR restrictions together in logical
expressions. When you add more than one constraint to a criteria query, the criteria query
interprets that as an AND:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.gt("price",new Double(25.0)));
crit.add(Restrictions.like("name","K%"));

List results = crit.list();

If we want to have two restrictions that return objects that satisfy either or both of the
restrictions, we need to use the or () method on the Restrictions class:

Criteria crit = session.createCriteria(Product.class);
Criterion price = Restrictions.gt("price",new Double(25.0));
Criterion name = Restrictions.like("name","Mou%");
LogicalExpression orExp = Restrictions.or(price,name);
crit.add(orExp);

List results = crit.list();

The orExp logical expression is treated like any other criterion after we create it. We can
even add another restriction to the criteria (which will be treated as an AND):

Criteria crit = session.createCriteria(Product.class);
Criterion price = Restrictions.gt("price",new Double(25.0));
Criterion name = Restrictions.like("name","Mou%");
LogicalExpression orExp = Restrictions.or(price,name);
crit.add(orExp);
crit.add(Restrictions.ilike("description”,"blocks%"));

List results = crit.list();

If we wanted to create an OR expression with more than two different criteria, we would
use an org.hibernate.criterion.Disjunction object to represent a disjunction. You can
obtain this object from the disjunction() factory method on the Restrictions class.The dis-
junction is more convenient than building a tree of OR expressions in code. To represent an AND
expression with more than two criteria, use the conjunction() method, although you can eas-
ily just add those to the criteria query object. The conjunction is also more convenient than
building a tree of AND expressions in code. Here is an example that uses the disjunction:

137

138

CHAPTER 7 =" QUERYING OBJECTS WITH CRITERIA

Criteria crit = session.createCriteria(Product.class);
Criterion price = Restrictions.gt("price",new Double(25.0));
Criterion name = Restrictions.like("name","Mou%");

Criterion desc = Restrictions.ilike("description”,"blocks%");
Disjunction disjunction = Restrictions.disjunction();
disjunction.add(price);

disjunction.add(name);

disjunction.add(desc);

crit.add(disjunction);

List results = crit.list();

The last type of restriction is the SQL restriction, sqlRestriction(). This restriction allows
you to directly specify SQL in the criteria query APL This is useful if you need to use SQL
clauses that Hibernate does not support through the criteria query API. Your application’s
code does not need to know the name of the table your class uses—use {alias} to signify the
class’s table:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.sqlRestriction("{alias}.name like 'Mou%'"));
List results = crit.list()

You can also use the other two sqlRestriction() methods to pass JDBC parameters and
values into the SQL statement. Use the standard ? JDBC parameter placeholder in your SQL
fragment.

Paging Through the Result Set

One common application pattern we find ourselves developing over and over again is pagina-
tion through the result set of a database query. When we say pagination, we mean an interface
in which the user sees part of the result set at a time, with navigation to go forward and back-
ward through the results. A naive pagination implementation might load the entire result set
into memory for each navigation, with terrible performance results. Both of us worked on
improving performance for separate projects with this problem. The problem appeared late
in testing because the sample dataset that developers were working with was trivial, and they
did not notice any performance problems until the first test data load.

If you are programming directly to the database, you will typically use proprietary
database SQL or database cursors to support paging. Hibernate abstracts this away for you—
behind the scenes, Hibernate uses the appropriate method for your database.

There are two methods on the Criteria interface for paging: setFirstResult() and
setMaxResults(). The setFirstResult() method takes an integer that represents the first row
in your result set, starting with row 0. You can tell Hibernate to only retrieve a fixed number of
objects with the setMaxResults() method. Using both of these together, we could construct a
paging component in our web or Swing application. We have a very small dataset in our sam-
ple application, so here is an admittedly trivial example:

Criteria crit = session.createCriteria(Product.class);
crit.setFirstResult(1);

crit.setMaxResults(2);

List results = crit.list();

CHAPTER 7 ©" QUERYING OBJECTS WITH CRITERIA

As you can see, this makes paging through the result set easy. You can increase the first
result you return from 1, to 21, to 41, etc. to page through the result set. If you only have one
result in your result set, Hibernate has a shortcut method for obtaining just that object.

Obtaining a Unique Result

Sometimes you know you are only going to return one or zero objects with a given criteria
query. This could be because you are calculating an aggregate (like COUNT, which we discuss
later), or because your restrictions lead to a unique result. You may also limit the results of
any result set to just the first result, using the setMaxResults() method we discussed earlier.
If you would like to just obtain an Object instead of a List, the uniqueResult() method on the
Criteria object returns an Object or null if there are zero results. If there is more than one
result, the uniqueResult() method throws a HibernateException.

A short example demonstrates having a result set that would have included more than
one result, except that it was limited with the setMaxResults() method:

Criteria crit = session.createCriteria(Product.class);
Criterion price = Restrictions.gt("price",new Double(25.0));
crit.setMaxResults(1);

Product product = (Product) crit.uniqueResult();

//test for null here if needed

Again, we stress that you need to make sure that your query only returns one
(or zero) results if you use the uniqueResult() method. Otherwise, Hibernate will throw a
NonUniqueResultException exception, which may not be what you would expect. Hibernate
does not just pick the first result and return it.

Sorting the Query’s Results

Sorting the query’s results works the same way in Hibernate as it would with SQL. The criteria
query API provides the org.hibernate.criterion.Order class to sort your result set in either
ascending or descending order according to one of your object’s properties.

Create an Order object with either of the two static factory methods on the Order class:
asc() for ascending or desc() for descending. Both methods take the name of the property as
their only argument. After you create an Order, use the addOrder () method on the Criteria
object to add it to the criteria query.

This example demonstrates how you would use the Order class:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.gt("price",new Double(25.0)));
crit.addOrder(Order.desc("price"));

List results = crit.list();

You may add more than one Order object to the Criteria object. Hibernate will pass them
through to the underlying SQL query. Your results will be sorted by the first order, then any
identical matches within the first sort will be sorted by the second order, and so on.

Hibernate passes the property value to SQL, after getting the proper database column
name for the property.

139

140

CHAPTER 7 =" QUERYING OBJECTS WITH CRITERIA

Associations

To add a restriction on a class that is associated with your criteria’s class, you will need to
create another criteria query object. Pass the property name of the associated class to the
createCriteria() method on the Criteria object, and you will have another Criteria object.
You can get the results from either Criteria object, although you should pick one style and be
consistent for readability’s sake. We find that getting the results from the top-level Criteria
object (the one that takes a class as a parameter) makes it clear what type of object is expected
in the results.

The associations work going from one-to-many as well as from many-to-one. First, we
will demonstrate how to use one-to-many associations to obtain the suppliers who sell prod-
ucts with a price over 25.0. Notice that we create a new Criteria object for the products
property, add restrictions to the products criteria we just created, and then obtain the results
from the supplier criteria query object:

Criteria crit = session.createCriteria(Supplier.class);
Criteria prdCrit = crit.createCriteria("products");
prdCrit.add(Restrictions.gt("price",new Double(25.0)));
List results = crit.list();

Going the other way, we can obtain all of the products from the supplier “Megalnc” using
many-to-one associations:

Criteria crit = session.createCriteria(Product.class);
Criteria suppCrit = crit.createCriteria("supplier");

suppCrit.add(Restrictions.eq("name", "MegaInc"));
List results = crit.list();

Although we used either criteria to obtain the results, when we sort the result set, it makes
a difference which criteria we use for ordering the results. In the following example, we are
ordering the supplier results by their name:

Criteria crit = session.createCriteria(Supplier.class);
Criteria prdCrit = crit.createCriteria("products");
prdCrit.add(Restrictions.gt("price",new Double(25.0)));
crit.addOrder (Order.desc("name"));

List results = prdCrit.list();

If we wanted to sort the suppliers by the descending price of their products, we would use
the following line of code. This code would have to replace the previous addOrder () call on the
supplier criteria object:

prdCrit.addOrder (Order.desc("price"));

Although the products are not in the result set, SQL still allows you to order by those
results. If you get mixed up with which Criteria object you are using and pass the wrong
property name for the sort by order, Hibernate will throw an exception.

CHAPTER 7 ©" QUERYING OBJECTS WITH CRITERIA 141

Distinct Results

If you would like to work with distinct results from a criteria query, Hibernate provides a result
transformer for distinct entities, org.hibernate.transform.DistinctRootEntityResultws
Transformer, that ensures that no duplicates will be in your criteria query’s result set. Rather
than using SELECT DISTINCT with SQL, the distinct result transformer compares each of your
results using their default hashCode () methods, and only adds those results with unique hash
codes to your result set. This may or may not be the result you would expect from an SQL
DISTINCT query, so be careful with this. As an additional note for large databases, the compari-
son is done in Hibernate’s Java code, not at the database, so nonunique results will still be
transported across the network.

Projections and Aggregates

Instead of working with objects from the result set, you can use the results from the result set
as a set of rows and columns. This is similar to how you would use data from a SELECT query
with JDBC, and Hibernate supports properties, aggregate functions, and group by. Projections
are a new feature for the criteria query API in version 3.

To use projections, start by getting the org.hibernate.criterion.Projection object you
need from the org.hibernate.criterion.Projections factory class. Similar to the Restrictions
class, Projections has several static factory methods for obtaining Projection instances. After
you get a Projection object, add it to your Criteria object with the setProjection() method.
When the Criteria executes, the list contains objects that you can cast to the appropriate
class.

The simplest example of projections is the row counting functionality. The code looks
similar to the restrictions we were working with earlier in the chapter:

Criteria crit = session.createCriteria(Product.class);
crit.setProjection(Projections.rowCount());
List results = crit.list();

The results list will contain one object, an Integer that contains the results of executing
the COUNT SQL statement.

Other aggregate functions available through the Projections factory class include the
following:

e avg(String propertyName): The average of a property’s value
e count(String propertyName): Counts the number of times a property has a value

e countDistinct(String propertyName): Counts the number of unique values the
property contains

e max(String propertyName): The maximum value of the property values
e min(String propertyName): The minimum value of the property values

e sum(String propertyName): The sum total of the property values

142

CHAPTER 7 =" QUERYING OBJECTS WITH CRITERIA

We can have more than one projection for a given criteria. To add multiple projections,
get a projection list from the projectionlList() method on the Projections class. The
org.hibernate.criterion.Projectionlist object has an add() method that takes a Projection
object. You can pass the projections list to the setProjection() method on the Criteria
object, as ProjectionlList implements the Projection interface. The following example
demonstrates some of the aggregate functions, along with the projection list:

Criteria crit = session.createCriteria(Product.class);
Projectionlist projList = Projections.projectionList();
projList.add(Projections.max("price"));
projList.add(Projections.min("price"));
projList.add(Projections.avg("price"));
projList.add(Projections.countDistinct("description"));
crit.setProjection(projlList);

List results = crit.list();

After you execute multiple aggregate projections, you will get a List with an Object array
as the first element. The Object array contains all of your values, in order.

Another use of projections is to retrieve individual properties, rather than classes. For
instance, we could retrieve just the name and description from our product table, instead of
faulting the classes into memory. Use the property() method on the Projections class to cre-
ate a Projection for a property. When you execute this form of query, the 1ist() method will
return a List of Object arrays. Each Object array will contain the projected properties for that
row. The following example returns just the contents of the name and description columns
from the Product data. Remember, Hibernate is polymorphic, so this also returns the name
and description from the Software objects that inherit from Product.

Criteria crit = session.createCriteria(Product.class);
Projectionlist projlList = Projections.projectionlist();
projList.add(Projections.property("name"));
projList.add(Projections.property("description"));
crit.setProjection(projList);

List results = crit.list();

Use this query style when you want to cut down on network traffic between your appli-
cation servers and your database servers. For instance, if your table has a large number of
columns, this can cut down your results. In other cases, you may have a large set of joins that
would return a very wide result set, but you are only interested in a few columns. Lastly, if your
clients have limited memory, this can save you trouble with large datasets. Be sure that you do
not need to retrieve additional columns for the entire result set later, or your optimizations
may actually decrease performance.

You can also group your results (SQLs GROUP BY clause) with the groupProperty projection.
The following example groups the products by name and price:

Criteria crit = session.createCriteria(Product.class);
Projectionlist projlList = Projections.projectionlist();
projlList.add(Projections.groupProperty("name"));
projlList.add(Projections.groupProperty("price"));
crit.setProjection(projList);

List results = crit.list();

CHAPTER 7 ©" QUERYING OBJECTS WITH CRITERIA

As you can see, projections open up aggregates to the criteria query API, which means
developers do not have to drop into HQL for aggregates. Projections offer a way to work with
data that is closer to the JDBC result set style, which may be appropriate for some parts of
your application.

Query By Example (QBE)

Another style of searching is Query By Example (QBE). Instead of programmatically building a
Criteria object with Criterion objects and logical expressions, you can partially populate an
instance of the object. Use the instance as an example and have Hibernate build the criteria
for you behind the scenes. This keeps your code clean, and makes your project easier to test.
The org.hibernate.criterion.Example class contains the QBE functionality. The Example class
implements the Criterion interface, so you can use it like any other restriction.

For instance, if we had a user database we could construct an instance of a user object,
set the property values for type and creation date, and then use the criteria query API to run a
QBE query. Hibernate would return a result set containing all user objects that matched the
property values that were set. Behind the scenes, Hibernate inspects the example object and
constructs an SQL fragment that corresponds to the properties on the example.

To use QBE, we need to construct an example object first. Then we need to create an instance
of the Example object, using the static create() method on the Example class. The create() method
takes the example object as its argument. You add the Example object to a criteria query object just
like any other Criterion object.

The following basic example searches for suppliers that match the name on the example
Supplier object:

Criteria crit = session.createCriteria(Supplier.class);
Supplier supplier = new Supplier();
supplier.setName("MegaInc");
crit.add(Example.create(supplier));

List results = crit.list();

When Hibernate translates your example object into an SQL query, all of the properties
on your example objects get examined. You can tell Hibernate which properties to ignore; the
default is to ignore null valued properties. If we want to search our products or software with
QBE, we need to either specify a price, or tell Hibernate to ignore properties with a value of
zero, because we used a double primitive for storage instead of a Double object. The double
primitive initializes to zero, while a Double would have been null. We can have the Hibernate
Example object exclude zero valued properties with the excludeZeroes() method. We also
could exclude properties by name with the excludeProperty() method or exclude nothing
(compare both null values and zeroes) with the excludeNone () method:

Criteria crit = session.createCriteria(Product.class);
Product exampleProduct = new Product();
exampleProduct.setName("Mouse");

Example example = Example.create(exampleProduct);
example.excludeZeroes();

crit.add(example);

List results = crit.list();

143

144

CHAPTER 7 =" QUERYING OBJECTS WITH CRITERIA

Other options on the Example object include ignoring the case for strings with the
ignoreCase() method and enabling use of SQLs LIKE instead of just equals for comparing
strings.

We can also use associations for QBE. In the following example, we create two examples:
one for the product and one for the supplier. We use the technique we explained in the
“Associations” section of this chapter to retrieve objects that match both criteria:

Criteria prdCrit = session.createCriteria(Product.class);
Product product = new Product();

product.setName("M%");

Example prdExample = Example.create(product);
prdExample.excludeProperty("price");
prdExample.enablelike();

Criteria suppCrit = prdCrit.createCriteria("supplier");
Supplier supplier = new Supplier();
supplier.setName("SuperCorp");
suppCrit.add(Example.create(supplier));
prdCrit.add(prdExample);

List results = prdCrit.list();

We also ignore the price property for our product, and we use LIKE for object comparison,
instead of equals.

The QBE API works best for searches where you are building the search from user input.
The Hibernate team recommends using QBE for advanced searches with multiple fields,
because its easier to set values on business objects than to manipulate restrictions with the
criteria query APL

Summary

Using the criteria query API is an excellent way to get started developing with HQL. The
developers of Hibernate provided a clean API for adding restrictions to queries with Java
objects. Although HQL is not too difficult to learn, some developers prefer the criteria query
API’s compile-time syntax checking for restrictions, although column names aren't checked
until runtime. The criteria query API is also more powerful in Hibernate 3 than it was in
Hibernate 2.1, with the addition of projections and aggregates.

CHAPTER 8

Querying with HQL and SQL

In the last chapter, we covered Hibernate’s criteria query API. In this chapter, we discuss the
Hibernate Query Language (HQL) and Hibernate’s native SQL functionality. Hibernate Query
Language is an object-oriented query language, similar to SQL, except that instead of working
with tables and columns, HQL works with persistent objects and their properties. HQL is very
powerful for working with object inheritance and associations. HQL is a language, and you
write HQL as strings like from Product p, as opposed to Hibernate’s criteria queries, which are
Java APIs. The criteria query API and HQL offer almost identical functionality. HQL now sup-
ports bulk update and delete queries in Hibernate 3, updated from the previous support for
deleting objects with HQL in Hibernate 2. In addition, you can write SQL queries to retrieve
objects from the database—Hibernate will pass the SQL through to the database, and then
translate the JDBC result set into your value objects.

Hibernate Query Language

Hibernate Query Language is a powerful query language designed for use with Hibernate.
Although most object-relational mapping tools and object databases offer an object query
language (sometimes abbreviated as OQL), Hibernate’s HQL stands out as being complete and
easy to use. Although you may use SQL statements directly with Hibernate (which is covered
in detail in the “Using Native SQL” section of this chapter), we strongly suggest that you use
HQL (or Criteria) wherever possible to avoid database porting hassles and to take advantage
of Hibernate’s SQL generation and caching strategies. Another reason to use HQL over SQL is
that HQL is a more compact query language. For instance, rather than specifying every rela-
tionship in the HQL query, HQL can use the relationships defined in the Hibernate mapping
files.

We realize that not every developer trusts that Hibernate’s generated SQL is optimized as
much as possible. If you think there is a performance bottleneck with some of your queries,
we recommend that you use SQL tracing on your database during performance testing of your
critical components. If you do see an area that needs optimization, we suggest trying first to
optimize using HQL, only later dropping into native SQL. Hibernate 3 provides statistics
through a JMX MBean that you can use for analyzing Hibernate’s performance—Hibernate’s
statistics also give you insight into how caching is performing.

145

146

CHAPTER 8 ©" QUERYING WITH HQL AND SQL

Note If you would like to execute HQL statements through a GUI-based tool, the Hibernate team provides
a Hibernate console for Eclipse in the Hibernate Tools subproject. This console is a plug-in for recent versions
of Eclipse. For each project, you will need to provide a Java object model and your Hibernate configuration
and mapping information to the Hibernate console.

First Example with HOL

The simplest HQL query returns all objects for a given class in the database. Similar to SQL, we
use the HQL clause from. With HQL, you do not have to use the leading select clause for this
query—instead we can use the following simple shortcut query to select all objects from the
Product table:

from Product

Note Like all HQL syntax, you can write from in lowercase or uppercase (or mixed case). However, any
Java classes or properties you reference in an HQL query have to be specified in the proper case. For
instance, when you query for instances of a Java class named Product, the HQL query from Product is
the equivalent of FROM Product. However, the HQL query from product is not the same as the HQL query
from Product. Because Java class names are case-sensitive, Hibernate is case-sensitive about class
names as well.

Embedding the following HQL statement into our application is straightforward. The
org.hibernate.Session object contains a method named createQuery():

public Query createQuery(String queryString) throws HibernateException

The createQuery() method takes a valid HQL statement, and returns an
org.hibernate.Query object. The Query interface is analogous to the org.hibernate.Criteria
interface we discussed in Chapter 7. The Query class provides methods for returning the
query results as aJava List, as an Iterator, or as a unique result. Other functionality
includes named parameters, results scrolling, JDBC fetch sizes, and JDBC timeouts. You can
also add a comment to the SQL that Hibernate creates, which is useful for tracing which HQL
statements correspond to which SQL statements.

To keep things simple with this example, we are using the same database and object
model we set up for Chapter 7. The object model contains Supplier, Product, and Software
classes. For more on this object model, see the beginning of Chapter 7.

Our first example executes our HQL statement, from Product, and then retrieves a List
of Product objects:

Query query = session.createQuery("from Product");
List results = query.list();

CHAPTER 8 © QUERYING WITH HQL AND SQL 147

Many of our other examples in this chapter use the same Java syntax as this example. We
are going to provide just the HQL for these examples—you can execute them the same way we
did here, substituting that HQL for the from Product HQL statement. This should make each
example clearer as to what you should be looking at. You could also execute these HQL state-
ments in Hibernate’s Eclipse-based HQL console.

Logging the Underlying SQL

Hibernate can output the underlying SQL behind your HQL queries into your application’s log
file. This is especially useful if the HQL query does not give the results you expect, or the query
takes longer than you wanted. You can run the SQL that Hibernate generates directly against
your database in the database’s query analyzer to determine what the problem is. This is not
a feature you will have to use often, but it becomes very useful when you have to turn to your
database administrators for help with tuning your Hibernate application.

The easiest way to see the SQL for a Hibernate HQL query is to enable SQL output
in the logs with the hibernate.show_sql property. Set this property to true in your
hibernate.properties or hibernate.cfg.xml configuration files, and Hibernate will output
the SQL into the logs. You do not need to enable any other logging settings, although setting
logging for Hibernate to debug also outputs the generated SQL statements, along with a lot
of other verbiage.

After enabling SQL output in Hibernate, you may rerun the previous example. Here is the
generated SQL statement for the HQL statement from Product:

select producto .id as id, productO .name as nameO , productO .description =
as descript3 0 , productO .price as price0 , productO .supplierIld =

as supplierIdo , productO 1 .version as versionl , =

case when product0_ 1 .productId is not null then 1 =

when product0_.id is not null then 0 end =

as clazz_ from Product product0_ left outer join Software product0 1 ‘=

on product0_.id=product0_ 1 .productId

As an aside, remember that the Software class inherits from Product, which does complicate
Hibernate’s generated SQL for this simple query. When we select all objects from our simple
Supplier class, the generated SQL for the HQL query from Supplier is much simpler:

select suppliero .id as id, supplier0 .name as name2 from Supplier suppliero

When you look in your application’s output for the Hibernate SQL statements, they will be
prefixed with Hibernate:. The previous SQL statement would look like this:

Hibernate: select supplier0 .id as id, supplierO_.name as name2 ‘=
from Supplier supplier0

If you turn your log4j logging up to debug for the Hibernate classes, you will see SQL state-
ments in your log files, along with lots of information about how Hibernate parsed your HQL
query and translated your HQL query into SQL.

148

CHAPTER 8 ©" QUERYING WITH HQL AND SQL

Commenting the Generated SQL

Tracing your HQL statements to the generated SQL can be difficult, so Hibernate provides
a commenting facility on the Query object that lets you apply a comment to an individual query.
The Query interface has a setComment () method that takes a String object as an argument:

public Query setComment(String comment)

Use this to identify the SQL output in your application’s logs, if SQL logging is enabled.
For instance, if we add a comment to this example, the Java code would look like this:

String hql = "from Supplier";

Query query = session.createQuery(hql);
query.setComment("My HOL: " + hql);
List results = query.list();

The output in your application’s log will have the comment in a Java-style comment
before the SQL:

Hibernate: /*My HOL: from Supplier*/ select supplier0 .id as id, supplierO .name w»
as name2_ from Supplier suppliero

We have found this useful for identifying SQL in our logs, especially because the gener-
ated SQL is a little difficult to follow when you are scanning large quantities of it in logs.

From Clause and Aliases

We have already discussed the basics of the from clause in HQL in the “First Example of HQL”
section. The most important feature to note is the alias. Hibernate allows you to assign aliases
to the classes in your query with the as clause. Use the aliases to refer back to the class inside
the query. For instance, our previous simple example would be

from Product as p
or
from Product as product

You'll see either alias naming convention in applications. The as keyword is optional—
you can also specify the alias directly after the class name:

from Product product

If you need to fully qualify a class name in HQL, just specify the package and class name.
Hibernate will take care of most of this behind the scenes, however, so you only really need
this if you have classes with duplicate names in your application. If you needed to do this in
Hibernate, use syntax such as the following:

from com.hibernatebook.criteria.Product

The from clause is very basic and useful for working directly with objects. If you would like
to work with the object’s properties without loading the full objects into memory, you may use
the select clause.

CHAPTER 8 © QUERYING WITH HQL AND SQL

Select Clause and Projection

The select clause provides more control over the result set than the from clause. If you would
like to obtain the properties of objects in the result set, use the select clause. For instance, we
could run a projection query on the products in the database that only returned the names,
instead of loading the full object into memory:

select product.name from Product product

The result set for this query will contain a List of Java String objects. Additionally, we
could retrieve the prices and the names for each product in the database:

select product.name, product.price from Product product

This result set contains a List of Object arrays—each array represents one set of properties
(in this case, a name and price pair).

If a few properties were all we were interested in, we could save network traffic to the
database server and memory on the application’s machine.

Using Restrictions with HQL

Similar to SQL, we use the where clause to select results that match our query’s expressions.
HQL provides many different possible expressions that you may use to construct a query. The
list is similar to the supported restrictions for the criteria query API. From the HQL language
grammar, we have the following possible expressions:

e Logic operators: OR, AND, NOT

* Equality operators: =, <>, 1=, "=

* Comparison operators: <, >, <=, >=, like, not like, between, not between
e Math operators: +, -, *, /

 Concatentation operator: | |

* Cases: case when <logical expression>then <unary expression> else
<unary expression> end

e Collection expressions: some, exists, all, any

In addition, you may also use the following expressions in the where clause:
* HQL named parameters: :date, :quantity

e JDBC query parameters: ?

* Date and time SQL-92 functional operators: current_time(), current date(),
current_timestamp()

e SQL Functions (supported by the database): length(), upper(), lower(), ltrim(),
rtrim(), etc.

149

150

CHAPTER 8 "' QUERYING WITH HQL AND SQL

Using these restrictions, we can build a where clause in HQL that is as powerful as an SQL
query. For many queries, HQL syntax is more compact and elegant than the criteria query API
syntax. For instance, here is an example of a criteria query that uses logical expressions:

Criteria crit = session.createCriteria(Product.class);
Criterion price = Restrictions.gt("price",new Double(25.0));
Criterion name = Restrictions.like("name","Mou%");
LogicalExpression orExp = Restrictions.or(price,name);
crit.add(orExp);
crit.add(Restrictions.ilike("description”,"blocks%"));

List results = crit.list();

The equivalent HQL would be the following:
from Product where price > 25.0 and name like 'Mou%'

We would have to wrap that HQL in a few Java calls, but we find this particular example
to be clearer in HQL. In the previous HQL example, you can see that we used the where clause
with a greater than comparison operator, an and logical operator, and the 1ike comparison
operator. You do have to enclose literal strings in quotes in HQL, and to find names that have
the literal "Mou" at the beginning of the string, we used % in the query.

Using Named Parameters

Hibernate supports named parameters in its HQL queries. This makes writing queries that
accept input from the user easy, and you do not have to defend against SQL injection attacks.

Note SQL injection is an attack against applications that create SQL directly from user input with string
concatenation. For instance, if we accept a name from the user through a web application form, then very
bad form would be to construct an SQL (or HQL) query like this:

String sql = "select p from products where name = + name + ;

A malicious user could pass a name to the application that contained a terminating quote and semicolon,
followed by another SQL command (such as delete from products) that would let them do whatever they
wanted. They would just need to end with another command that matched the SQL statement’s ending quote.
This is a very common attack, especially if the malicious user can guess details of your database structure.

You could escape the user’s input yourself for every query, but it is much less of a security
risk if you let Hibernate escape all of your input with named parameters. Hibernate’s named
parameters are similar to the JDBC query parameters (?) you may already be familiar with, but
Hibernate’s parameters are less confusing. It is also more straightforward to use Hibernate’s
named parameters if you have a query that uses the same parameter in multiple places.

When you use JDBC query parameters, any time you add, change, or delete parts of the SQL
statement, you need to update your Java code that sets its parameters, because the parameters

CHAPTER 8 © QUERYING WITH HQL AND SQL

are indexed, based on the order they appear in the statement. Hibernate lets you provide names
for the parameters in the HQL query, so you do not have to worry about accidentally moving
parameters further up or back in the query.

The simplest example of named parameters uses regular SQL types for the parameters:

String hql = "from Product where price > :price”;
Query query = session.createQuery(hql);
query.setDouble("price",25.0);

List results = query.list();

Although that is interesting, we can use some of HQLs object-oriented features to provide
objects as values for named parameters. The Query interface has a setEntity() method that
takes the name of a parameter and an object. Using this functionality, we could retrieve all of
the products that have a supplier whose object we already have:

String supplierHOL = "from Supplier where name='Megalnc'";
Query supplierQuery = session.createQuery(supplierHQL);
Supplier supplier = (Supplier) supplierQuery.list().get(0);

String hql = "from Product as product where product.supplier=:supplier"”;
Query query = session.createQuery(hql);
query.setEntity("supplier",supplier);

List results = query.list();

If you'd like, you can also use regular JDBC query parameters in your HQL queries. We do
not particularly see any reason why you would want to, but they do work.

Paging Through the Result Set

As we discussed in Chapter 7, pagination through the result set of a database query is a very
common application pattern. Typically, you would use pagination for a web application that
returned a large set of data for a query. The web application would page through the database
query result set to build the appropriate page for the user. The application would be very slow
if the web application loaded all of the data into memory for each user—instead we can page
through the result set and retrieve the results we are going to display a chunk at a time.

There are two methods on the Query interface for paging: setFirstResult() and
setMaxResults(), just like the Criteria interface. The setFirstResult() method takes an inte-
ger that represents the first row in your result set, starting with row 0. You can tell Hibernate
to only retrieve a fixed number of objects with the setMaxResults() method. Our HQL is
unchanged—we only need to modify the Java code that executes the query. Excuse our tiny
dataset for this trivial example of pagination:

Query query = session.createQuery("from Product");
query.setFirstResult(1);

query.setMaxResults(2);

List results = query.list();
displayProductsList(results);

151

152

CHAPTER 8 ©" QUERYING WITH HQL AND SQL

You can change the numbers around and play with the pagination. If you turn on SQL
logging, you can see what SQL commands Hibernate uses for pagination. For the Open Source
database HSQLDB, Hibernate uses top and 1imit.

If you only have one result in your HQL result set, Hibernate has a shortcut method for
obtaining just that object.

Obtaining a Unique Result

Similar to the criteria query API, HQLs Query interface provides a uniqueResult() method for
obtaining just one object from an HQL query. Although your query may only yield one object,
you may also use the uniqueResult() method with other result sets if you limit the results to just
the first result. You could use the setMaxResults() method we discussed in the previous section.
The uniqueResult() method on the Query object returns an Object or null if there are zero results.
If there is more than one result, the uniqueResult() method throws a NonUniqueResultException.

A short example demonstrates having a result set that would have included more than one
result, except that it was limited with the setMaxResults() method:

String hql = "from Product where price>25.0";
Query query = session.createQuery(hql);
query.setMaxResults(1);

Product product = (Product) query.uniqueResult();
//test for null here if needed

Unless your query only returns one (or zero) results, the uniqueResult() method will
throw a NonUniqueResultException exception. Do not expect Hibernate just to pick off the first
result and return it—either set the maximum results of the HQL query to one, or obtain the first
object from the result list.

Sorting Your Results with Order By

To sort your HQL query’s result sets, you will need to use the order by clause. You can order
the results by any property on the objects in the result set: either ascending (asc) or descend-
ing (desc). Use ordering on more than one property in the query if you need to. A typical HQL
query for sorting results looks like this:

from Product p where p.price>25.0 order by p.price desc

If we wanted to sort by more than one property, we would just add the additional properties
to the end of the order by clause, separated by commas. For instance, we could sort by product
price and the supplier’s name:

from Product p order by p.supplier.name asc, p.price asc

HQL is more straightforward for ordering than the equivalent approach using the criteria
query APL

CHAPTER 8 © QUERYING WITH HQL AND SQL

Associations

Associations allow you to use more than one class in an HQL query, just as SQL allows you to
use joins between tables in the relational database. Add an association to an HQL query with
the join clause. Hibernate supports five different types of joins: inner, cross, left outer, right
outer, and full outer join.Ifyouusecross join, justspecify both classes in the from clause
(from Product p, Supplier s).For the other joins, use a join clause after the from clause. Specify
the type of join, the object property to join on, and an alias for the other class.

We can use the inner join to obtain the supplier for each product, and then retrieve the
supplier name, product name, and product price:

select s.name, p.name, p.price from Product p inner join p.supplier as s
You can retrieve the objects using similar syntax:
from Product p inner join p.supplier as s

We used aliases in these HQL statements to refer to the entities in our query expressions.
These are particularly important in queries with associations that refer to two different entities
with the same class—for instance, if we are doing a join from a table back to itself. Commonly,
these types of joins are used to organize tree data structures. We discussed aliases in the “From
Clause and Aliases” section of this chapter.

Notice that Hibernate does not return Object objects in the result set; instead Hibernate
returns Object arrays in the results. You will have to access the contents of the Object arrays to
get the Supplier and the Product objects.

If you would like to start optimizing performance, you can ask Hibernate to fetch the asso-
ciated objects and collections for an object in one query. If we were using lazy loading with
Hibernate, the objects in the collection would not be initialized until we accessed them. If we
use fetch on a join in our query, we can ask Hibernate to retrieve the objects in the collection
at the time the query executes. Add the fetch keyword after the join in the query:

from Supplier s inner join fetch s.products as p

When you use fetch for a query like this, Hibernate will return only the Supplier objects,
not the Product objects. This is because you are specifying the join so Hibernate knows which
objects to fetch (instead of lazy loading). If you need to get the Product objects, access them
through the associated Supplier object. You cannot use the properties of the Product objects
in expressions in the where clause, for instance. Use of the fetch keyword overrides any set-
tings you have in the mappings file for object initialization.

Aggregate Methods

HQL supports a range of aggregate methods, similar to SQL. They work the same way in HQL
as in SQL, so you do not have to learn any specific Hibernate terminology. The difference is
that in HQL, aggregate methods apply to the properties of persistent objects. The count(...)
method returns the number of times the given column name appears in the result set. You may
use the count (*) syntax to count all of the objects in the result set, or count(product.name) to
count the number of objects in the result set with a name property. Here is an example using
the count (*) method to count all products:

select count(*) from Product product

153

154

CHAPTER 8 ©" QUERYING WITH HQL AND SQL

The distinct keyword only counts the unique values in the row set—for instance, if
there are 100 products, but 10 have the same price as another product in the results, then
aselect count(distinct product.price) from Product product query would return 90. In our
database, the following query will return 2, one for each supplier:

select count(distinct product.supplier.name) from Product product

If we removed the distinct keyword, it would return 5, one for each product.

All of these queries return an Integer object in the list. You could use the uniqueResult()
method here to obtain the result.

The aggregate functions available through HQL include the following:

 avg(property name): Average of a property’s value

e count(property name or *): Counts the number of times a property has a value
e max(property name): The maximum value of the property values

e min(property name): The minimum value of the property values

e sum(property name): Sum total of the property values

If you have more than one aggregate method, the result set List will contain an Object
array with each of the aggregates you requested. Adding another aggregate to the select clause
is straightforward:

select min(product.price), max(product.price) from Product product

You can also combine these with other projection properties in the result set.

Bulk Updates and Deletes with HQL

Bulk updates are new to HQL with Hibernate 3, and deletes work differently in Hibernate 3 than
they did in Hibernate 2. The Query interface now contains a method called executeUpdate() for
executing HQL update or delete statements. The executeUpdate() method returns an int that
contains the number of rows affected by the update or delete:

public int executeUpdate() throws HibernateException

HQL updates look like you would expect them to, being based on SQL update statements.
Do not include an alias with the update; instead, put the set keyword right after the class name:

String hql
where name

"update Supplier set name = :newName ‘=
:name";

Query query = session.createQuery(hqgl);

non

query.setString("name","SuperCorp");
query.setString("newName", "MegaCorp");
int rowCount = query.executeUpdate();

System.out.println("Rows affected: " + rowCount);

CHAPTER 8 © QUERYING WITH HQL AND SQL

//See the results of the update
query = session.createQuery("from Supplier");
List results = query.list();

You may use a where clause with updates to control which rows get updated, or you may
leave it off to update all rows. Notice that we printed out the number of rows affected by the
query. We also used named parameters in our HQL for this bulk update.

Bulk deletes work in a similar way. Use the delete from clause with the class name you
would like to delete from. Then use the where clause to narrow down which entries in the table
you would like to delete. Use the executeUpdate() method to execute deletes against the data-
base as well. Our code surrounding the delete HQL statement is basically the same—we used
named parameters and we print out the number of rows affected by the delete:

String hql = "delete from Product where name = :name";
Query query = session.createQuery(hqgl);
query.setString("name", "Mouse");

int rowCount = query.executeUpdate();
System.out.println("Rows affected: " + rowCount);
//See the results of the update

query = session.createQuery("from Product");

List results = query.list();

Caution Using bulk updates and deletes in HQL works almost the same as you would expect in SQL, so
keep in mind that these are powerful and can erase the data in your tables if you make a mistake with the
where clause.

Named Queries for HQL and SQL

One of Hibernate’s best features is named queries, where your application can store its HQL
queries outside the application in the mapping file. This has many benefits for application
maintenance. The first benefit is that many objects can share queries—you could set up static
final strings on classes with the HQL queries, but Hibernate already provides a nice facility for
the same thing. The next benefit is that named queries could also contain native SQL queries—
the application calling the named query does not need to know if the named query is SQL or
HQL. This has enormous benefits for migrating SQL-based applications to Hibernate. The last
benefit is that you can provide your HQL and SQL queries in a configuration file to your database
administrators, who would probably find it easier to work with an XML-mapping file than HQL
statements embedded in Java code.

Add named queries in the appropriate Hibernate mapping file. HQL queries use the
<query> XML element, and SQL queries use the <sql-query> XML element. Both of these XML
elements require a name attribute that uniquely identifies the query in the application. With
one simple HQL named query, and one simple SQL query that does the same exact thing, we
have this Hibernate mapping file, Product.hbm.xml, as seen in Listing 8-1.

155

156

CHAPTER 8 ©" QUERYING WITH HQL AND SQL

Listing 8-1. Product.hbm.xml

<?xml version='1.0"' encoding="utf-8'?>

<IDOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="com.hibernatebook.criteria">
<class name="Product">
<id name="id" type="int">
<generator class="native"/>
</id>

<property name="name" type="string"/>

<property name="description" type="string"/>

<property name="price" type="double"/>

<many-to-one name="supplier" class="Supplier" column="supplierId"/>

</class>

<query name="com.hibernatebook.criteria.Product.HOLpricing"><![CDATA[
select product.price from Product product where product.price > 25.0]]>
</query>
<sql-query name="com.hibernatebook.criteria.Product.SQLpricing">
<return-scalar column="price" type="double"/>
<1 CDATA[
select product.price from Product as product where product.price > 25.0]]>
</sql-query>
</hibernate-mapping>

Notice that we embedded the SQL and HQL queries in CDATA regions. This protects our SQL
queries from interfering with the XML parser—we don't have to worry about special characters
breaking the XML. For the native SQL query, we also had to specify a return type, so Hibernate
knows what type of result data to expect from the database. When you use HQL, Hibernate
handles that mapping behind the scenes, because it knows which objects went in. With SQL,
you have to specify the return types yourself. In this case, we used the <return-scalar> XML
element to define our return type as a column named price, with a type of double. Hibernate
converts the JDBC result set into an array of objects, just like the previous HQL query. Func-
tionally, they are identical. We discuss native SQL in more detail in the next section of this
chapter.

You may also specify the flush mode, whether or not the query is cacheable, the cache
region, the fetch size, and the timeout for the HQL and SQL queries. For the SQL query, you
may additionally specify whether the SQL query is callable.

CHAPTER 8 © QUERYING WITH HQL AND SQL

Using Native SQL

Although you should probably use HQL wherever possible, Hibernate does provide a way to
use native SQL statements directly through Hibernate. One reason to use native SQL is that
your database supports some special features through its dialect of SQL that is not supported
in HQL. Another reason is that you would like to call stored procedures from your Hibernate
application. We discuss stored procedures and other database-specific integration solutions in
Chapter 13. Rather than just providing an interface to the underlying JDBC connection, like
other Java ORM tools, Hibernate provides a way to define the entity (or join) the query uses.
This makes integration with the rest of your ORM-oriented application easy.

You can modify your SQL statements to make them work with Hibernate’s object-relational
mapping layer. You do need to modify your SQL to include Hibernate aliases that correspond
to objects or object properties. You can specify all properties on an object with {objectname.*},
or you can specify the aliases directly with {objectname.property}. Hibernate uses the mappings
to translate your object property names into their underlying SQL columns. This may not be
the exact way you expect Hibernate to work, so be aware that you do need to modify your SQL
statements for full ORM support. You will especially run into problems with native SQL on classes
with subclasses—be sure you understand how you mapped the inheritance across either a sin-
gle table or multiple tables, so you select the right properties off of the table.

Underlying Hibernate’s native SQL support is the org.hibernate.SQLQuery interface,
which extends the org.hibernate.Query interface we already discussed. Your application will
create a native SQL query from the session with the createSQLQuery() method on the Session
interface.

public SQLQuery createSQLQuery(String queryString) throws HibernateException

After you pass a string containing the SQL query to the createSQLQuery () method, you
should associate the SQL result with an existing Hibernate entity, a join, or a scalar result. The
SQLQuery interface has addEntity(), addJoin(), and addScalar() methods. For the entities and
joins, you can specify a lock mode, which we discuss in Chapter 9. The addEntity() methods take
an alias argument and either a class name or an entity name. The addJoin() methods take an
alias argument and a path to join.

Using native SQL with scalar results is the simplest way to get started with native SQL. Our
Java code looks like this:

String sql = "select avg(product.price) as avgPrice from Product product";
SQLQuery query = session.createSQLQuery(sql);
query.addScalar("avgPrice",Hibernate.DOUBLE);

List results = query.list();

Hibernate does execute the same SQL we passed through, because we did not need to
specify any entity aliases:
select avg(product.price) as avgPrice from Product product

The SQL is regular SQL (we did not have to do any aliasing here). We created an SQLQuery
object, and then added a scalar mapping with the built-in double type (from the org.hibernate.

Hibernate class). We needed to map the avgPrice SQL alias to the object type. The results are
a List with one object, a Double.

157

158

CHAPTER 8 ©" QUERYING WITH HQL AND SQL

One step more complicated than the previous example is native SQL that returns a result
set of objects. In this case, we will need to map an entity to the SQL query. The entity consists
of the alias we used for the object in the SQL query and its class. For this example, we used our
Supplier class:

String sql = "select {supplier.*} from Supplier supplier";
SQLQuery query = session.createSQLQuery(sql);
query.addEntity("supplier"”, Supplier.class);

List results = query.list();

Hibernate modifies the SQL, and executes the following command against the database:
select Supplier.id as ido_, Supplier.name as name2 O from Supplier supplier

The special aliases allow Hibernate to map the database columns back to the object
properties.

In Chapter 13, we discuss more advanced ways to use native SQL to integrate your Hibernate
application with existing databases. We cover the use of stored procedures, and we also discuss
how to use persistent object custom loading with native SQL.

Summary

The Hibernate Query Language (HQL) is a powerful object-oriented query language that pro-
vides the power of SQL, while taking advantage of Hibernate’s object-relational mapping and
caching. If you are porting an existing application to Hibernate, you can use Hibernate’s native
SQL facilities to execute SQL against the database. The SQL functionality is also useful for
executing SQL statements specific to a given database that have no equivalents in HQL.

You may turn on SQL logging for Hibernate, and Hibernate will log the generated SQL
Hibernate executes against the database. If you add a comment to your HQL query object,
Hibernate will display a comment in the log next to the SQL statement—this helps with tracing
SQL statements back to HQL in your application.

CHAPTER 9

Using the Session

In earlier chapters, we encountered the Session object often enough that it has become
apparent that it is the central point of access to Hibernate functionality. We will now look at
what it embodies and what that implies about how you should use it.

Sessions

From our examples in the earlier chapters, you will have noticed that a small number of
classes dominates our interactions with Hibernate. Of these, the Session is the lynchpin.

The Session is used to create a new database object, read in objects from the database,
update the objects in the database, and delete objects from the database. It allows us to man-
age the transaction boundaries of database access, and (in a pinch) it allows us to obtain a
traditional JDBC connection object so that we can do anything to the database that the Hiber-
nate developers have not already considered (precious little) in their existing design.

If you are familiar with the connected approach, it helps to think of a Session as
being somewhat like a JDBC connection, and the SessionFactory, which provides Session
objects, as being somewhat like a ConnectionPool, which provides Connection objects. The
SessionFactory is an expensive object—needlessly duplicating it will cause problems quickly,
and creating a SessionFactory is a relatively time-consuming process. Ideally, you should have
a single SessionFactory for each database your application will access. The SessionFactory
is threadsafe, so it is not necessary to obtain one for each thread. However, you will create
numerous Session objects—at least one for each thread using Hibernate as the Session is not
threadsafe—and, often, you will want to create multiple Session instances even during the
lifetime of a specific thread (see the “Threads” section for concurrency issues).

CGaution The analogy between a Hibernate Session and a JDBC connection only goes so far. One impor-
tant difference is that if a Hibernate Session throws an exception of any sort, you should discard it and
obtain a new one. This prevents data in the session’s cache from becoming inconsistent with the database.

We will not try to discuss each of the methods available to you through the Session inter-
face, but we will look at some of the method categories that Session provides (see Table 9-1).
For an exhaustive look at what is available, you should read the API documentation on the
Hibernate website, or in the Hibernate 3 download.

159

160

CHAPTER 9

USING THE SESSION

Table 9-1. Hibernate Method Summary

Methods

Description

Create, Read, Update, and Delete

save
saveOrUpdate

persist

get
getIdentifier
load

refresh
update
delete
createFilter

createQuery

Saves an object to the database.
Saves an object to the database, or updates the database if it already exists.

Reassociates an object with the session so that updates to it will be
persisted.

Retrieves a specific object from the database by the object’s identifier.
Determines the identifier for a specific object associated with the session.

Loads an object from the database by the object’s identifier (you should
use the get method if you are not certain it is in the database).

Refreshes the state of an object from the database.
Updates the database with changes to an object.
Deletes an object from the database.

Creates a filter to narrow operations on the database.

Creates a Hibernate query to be applied to the database.

Transactions and Locking

beginTransaction
lock

Managing Resources
openSession
contains

clear
evict
flush
isOpen
isDirty

The JDBC Connection

close

disconnect

reconnect

isConnected

Begins a transaction.

Gets a database lock for an object (or can be used like persist if
LockMode .NONE is given).

Opens the session object, acquiring necessary resources.
Determines if a specific object is associated with the database.

Clears the session of all loaded instances, cancels any saves, updates, or
deletions that have not been completed. Retains any iterators that are in
use.

Disassociates an object from the session so that subsequent changes to it
will not be persisted.

Flushes all pending changes into the database—all saves, updates, and
deletions will be carried out; essentially, this synchronizes the session with
the database.

Determines if the session has been closed.

Determines if the database is synchronized with the database.

Closes the session, and, hence, the underlying database connection;
releases other resources (such as the cache). This is not essential if you
have called disconnect, but it is usually a good idea. You must not perform
operations on the session after calling close as they will generate
exceptions.

Disconnects the underlying database connection, but maintains the
cached Session objects.

Reconnects the underlying database connection.

Determines if the underlying database connection is connected.

CHAPTER 9 ' USING THE SESSION

Transactions and Locking

Transactions and locking are intimately related—the locking techniques chosen to enforce
a transaction can determine both the performance and likelihood of the success of a transaction.
The type of transaction selected dictates, to some extent, the type of locking that it must use.

You are not obliged to use transactions if they do not suit your needs. Though, you will
need to invoke the flush() method on the session to ensure that your changes are persisted
to the database if you choose not to use them.

Transactions

A transaction is a unit of work guaranteed to behave as if you had exclusive use of the data-
base. If you wrap your work in a transaction, the behavior of other system users will not affect
your data. A transaction can be started, committed to write data to the database, or rolled
back to remove all changes from the beginning onward (usually as the result of an error). To
achieve this, you obtain a Transaction object from the database (beginning the transaction)
and manipulate this:

Session session = factory.openSession();
Transaction tx = null;

try {
tx = session.beginTransaction();

// Normal session usage here...

tx.commit();
tx = null;
} catch (HibernateException e) {
if (tx != null) tx.rollback();
} finally {
session.close();

}

In the real world, transactions are not truly ACID because you can adjust how compliant
your transaction will be; however, in a perfect world, all transactions would be carried out
strictly observing these rules with no ill effects. Most databases supported by Hibernate sup-
port the ACID requirements of relational theory as closely as possible.

Different database suppliers support and permit you to break the ACID rules to a lesser
or greater extent, but the degree of control over the isolation rule is actually mandated by the
SQL-92 standard. There are important reasons why you might want to break this rule, so both
JDBC and Hibernate also make explicit allowances for it.

161

162

CHAPTER 9 " USING THE SESSION

THE ACID TESTS

Atomicity: A transaction should be all or nothing. If it fails to complete, the database will be left as if none of
the operations had ever been performed—known as a rollback.

Consistency: A transaction should be incapable of breaking any rules defined for the database. For
example, foreign keys must be obeyed. If for some reason this is impossible, the transaction will be rolled
back.

Isolation: The effects of the transaction will be completely invisible to all other transactions until it has
completed successfully. This guarantees that the transaction will always see the data in a sensible state. For
example, an update to a user’s address should only contain a correct address (i.e., it will never have the
house name for one location but the zip code for another); without this rule, a transaction could easily see
when another transaction had updated the first part but not yet completed.

Durability. The data should be retained intact. If the system fails for any reason, it should always be
possible to retrieve the database up to the moment of the failure.

The isolation levels permitted by JDBC and Hibernate are listed in Table 9-2.

Table 9-2. JDBC Isolation levels

Level Name Permitted

0 None Anything. The database or driver does not support transactions.
1 Read uncommitted Dirty, nonrepeatable, and phantom reads.

2 Read committed Nonrepeatable reads and phantom reads.

4 Repeatable read Phantom reads.

8 Serializable The rule must be obeyed absolutely.

A dirty read may see the in-progress changes of an uncommitted transaction. As in our
example, it could see the wrong zip code for an address.

A nonrepeatable read sees different data for the same query. For example, it might deter-
mine a specific user’s zip code at the beginning of the transaction and again at the end, and
get a different answer both times without making any updates.

A phantom read sees different numbers of rows for the same query. For example, it might
see 100 users in the database at the beginning of the query and 105 at the end without making
any updates.

Hibernate treats the isolation as a global setting—you apply the configuration option
hibernate.connection.isolation in the usual manner, setting it to one of the values permitted
in Table 9-2. This is not always ideal. You will sometimes want to treat one particular transaction
at a high (usually serializable) level of isolation, while permitting lower degrees of isolation for
others. To do so, you will need to obtain the JDBC connection directly, alter the isolation level,
begin the transaction, roll back or clean up the transaction as appropriate, and reset the iso-
lation level back to its original value before releasing the connection for general usage. The
createUser () method (discussed in the “Deadlock” section later in this chapter) demonstrates
the additional complexity that the connection-specific transaction isolation involves.

CHAPTER 9 ' USING THE SESSION

Fortunately, the normal case for a transaction using the global isolation level is much sim-
pler. We provide a more standard implementation of the createUser() method for comparison
in Listing 9-1.

Listing 9-1. Using the Global (Default) Isolation Level

public static void createUser(String username)
throws HibernateException {
Session session = sessions.openSession();
Transaction tx = null;
try {
// Begin the transaction
tx = session.beginTransaction();

// Normal usage of the Session here...
Publisher p = new Publisher(username);
Subscriber s = new Subscriber(username);
session.create(p);

session.create(s);

// Commit the transaction
tx.commit();
tx = null;

} catch (HibernateException e) {
// Handle a failed transaction
if (tx != null)

tx.rollback();

} finally {

// Close the session
session.close();

Locking

A database can conform to these various levels of isolation in a number of ways, and you will
need a working knowledge of locking to elicit the desired behavior and performance from
your application in all circumstances.

To prevent simultaneous access to data, the database itself will acquire a lock on that
data. This may be acquired only for the momentary operation on the data, or it may be
retained until the end of the transaction. The former is optimistic locking, the latter is
pessimistic locking.

The Read Uncommitted isolation level always acquires optimistic locks, whereas the seri-
alizable isolation level will only acquire pessimistic locks. Some databases offer a feature that
allows you to append the FOR UPDATE query to a select operation, which requires the database
to acquire a pessimistic lock even in the lower isolation levels.

163

164

CHAPTER 9 ©" USING THE SESSION

Hibernate provides some support for this feature when it is available, and takes it some-
what further by adding facilities that describe additional degrees of isolation obtainable from
Hibernate’s own cache.

The LockMode object controls this fine-grained isolation (see Table 9-3). It is only applica-
ble to the Session.get methods, so it is limited; however, where possible, it is preferable to the
direct control of isolation mentioned previously.

Table 9-3. Lock Modes

Mode Description

NONE Only reads from the database if the object is not available from the caches.
READ Reads from the database regardless of the contents of the caches.

UPGRADE If you are using versioning, the version is checked. If the version is not stale,

a dialect-specific upgrade lock will be obtained for the data to be accessed
(if this is available from your database).

UPGRADE_NOWAIT Behaves like UPGRADE, but where support is available from the database and
dialect, the method will fail with a locking exception immediately. Without
this option, or on databases where it is not supported, the query must wait
for alock to be granted (or for a timeout to occur).

An additional lock mode, WRITE, is acquired by Hibernate automatically when it has writ-
ten to a row within the current transaction. This mode cannot be set explicitly.

Having discussed locking in general, we need to touch on some of the problems that locks
can cause.

Deadlocks

Even if you have not encountered deadlock (sometimes given the rather louche name of
“deadly embrace”) in databases, you probably have encountered the problem in multi-
threaded Java code. The problem arises from similar origins.

Two threads of execution can get into a situation where each is waiting for the other to
release a resource that it needs. The most common way to create this situation in a database
is shown in Figure 9-1.

Each thread obtains a lock on its table when the update begins. Each thread proceeds
until the table held by the other user is required. Neither thread can release the lock on its own
table until the transaction completes—so something has to give.

Fortunately, a Database Management System (DBMS) can detect this situation automati-
cally, at which point the transaction of one or more of the offending processes will be aborted
by the database. The resulting deadlock error will be received and handled by Hibernate as a
normal HibernateException. Now you must roll back your transaction, close the session, and
then (optionally) try again.

CHAPTER 9 ' USING THE SESSION

Lock and Update Pub.

\ Lock on Sub.
Thread 1 Blocked o] | Exception in Thread 1
1
| Publisher Table Locked (—I—Thread 1's Lock on Pub.
v 4 Released by DBMS
| Subscriber Table Locked |
‘1
Thread 2 PP Y| Complete Thread 2
ock on Pub. Lock and Update Pub.
Blocked

Lock and Update Sub.

Figure 9-1. The anatomy of a deadlock

In Listing 9-2, we demonstrate how four updates on two threads can cause a deadlock.
If you look at the output from the threads, you will see that one of them completes while the
other fails with a deadlock error. Looking at the database after completion, you will see that
the “test” user has been replaced with either “jeff” or “dave” in both tables (you will never see
“dave” from one thread and “jeff” from the other). Though it is not necessary here, because we
close the session regardless, in a more extensive application it is important to ensure that the
session associated with a deadlock or any other Hibernate exception is closed and never used

again.

It is worth building and running Listing 9-2 to ensure that you are familiar with the symp-
toms of a deadlock when they occur.

Listing 9-2. Code to Generate a Deadlock

package com.hibernatebook.chapter09.deadlock;

import
import

import
import
import
import
import
import

java.sql.Connection;
java.sql.SQLException;

org.hibernate.HibernateException;
org.hibernate.Query;
org.hibernate.Session;
org.hibernate.SessionFactory;
org.hibernate.Transaction;
org.hibernate.cfg.Configuration;

165

166 CHAPTER 9 ©" USING THE SESSION

public class GenerateDeadlock {
public abstract static class Task implements Runnable {

// Specify the name of the task to carry out

// and the name of the user to look up and

// modify

public Task(String taskName, String username) {
this.username = username;
this.taskName = taskName;

}

abstract public void step1(Session session);
abstract public void step2(Session session);

// Carry out two database steps with a pause between
// them.
public void run() {
Session session = sessions.openSession();
Transaction tx = null;
try {
System.out.println(taskName + " begins a transaction.");
tx = session.beginTransaction();

// Step 1
System.out.println(taskName +
step1(session);

n

step 1");

// Pause to ensure proper ordering
// of the steps. You would never
// normally do this!

pause();

// Step 2
System.out.println(taskName +
step2(session);

n

step 2");

tx.commit();

System.out
.println(taskName + " committed its transaction.");
tx = null;

} catch (HibernateException e) {
if (tx != null)
tx.rollback();
System.out.println(taskName

+ " rolled back its transaction:

n

+e);

}

private static SessionFactory sessions = new Configuration()

CHAPTER 9

} finally {

System.out.println("Session for " + taskName + " closed.");

session.close();

}

private void pause() {
setPaused(true);
while (isPaused()) {
synchronized (this) {
try {
System.out.println("Pausing
wait();
} catch (InterruptedException e) {
// No need to process this.

}

I

+ taskName);

}
}

System.out.println(taskName + " awoken, continuing...");

}

public boolean isPaused() {
return isPaused;

}
public void setPaused(boolean isPaused) {
this.isPaused = isPaused;
if (lisPaused) {
synchronized (this) {

notifyAll();
}

}

protected String taskName;
protected String username;

private boolean isPaused = false;

.configure().buildSessionFactory();

// Create a user in the database - illustrates
// explicit setting of the isolation transaction
// for a single transaction.

USING THE SESSION

167

168 CHAPTER 9 ©" USING THE SESSION

public static void createUser(String username)
throws HibernateException {
Session session = sessions.openSession();
Connection conn = null;

int isolation = -1;

try {
// Obtain the JDBC connection
conn = session.connection();

// Determine the initial isolation level of the transaction
isolation = conn.getTransactionIsolation();

// Explicitly set the transaction's isolation level

// before beginning the transaction.
conn.setTransactionIsolation(Connection.TRANSACTION SERIALIZABLE);
conn. setAutoCommit(false);

// Normal usage of the Session here...
Publisher p = new Publisher(username);
Subscriber s = new Subscriber(username);
session.create(p);

session.create(s);

// Force data to be written to the database
// BEFORE the transaction is committed.
session.flush();
// Commit the transaction
conn.commit();
} catch (Exception e1) {
// Handle a failed transaction
try {
if (conn != null) {
conn.rollback();
}
} catch (SQLException e2) {
System.out.println("Could not rollback the connection:
+ e2);

n

}
} finally {
// Restore the original isolation of the committed
// or rolled back transaction
if (conn != null) {
if (isolation != -1) {
try {
conn.setTransactionIsolation(isolation);
} catch (SQLException e2) {

CHAPTER 9 ' USING THE SESSION

System.out.println(
"Could not restore the connection isolation level:
+ €e2);

}

// Close the session
session.close();

}

public static void main(String[] argv) {
String username = "test";

// First, we'll create the Publisher and
// Subscriber.
createUser(username);

// We create a task (ready to be run) that will
// update the Publisher, pause, then update the
// Subscriber.
Task taskA = new Task("Task A", username) {
public void step1(Session session) {
Query query = session
.createQuery("from Publisher where :foo = username");
query.setString("foo", username);
Publisher p = (Publisher) query.uniqueResult();
p.setUsername("jeff");

}

public void step2(Session session) {

Query query = session
.createQuery("from Subscriber where :foo = username");

query.setString("foo", username);
Subscriber s = (Subscriber) query.uniqueResult();
s.setUsername("jeff");

}

};

// We create a task (ready to be run) that will
// update the Subscriber, pause, then update the
// Publisher (the opposite order to TaskA).
Task taskB = new Task("Task B", username) {
public void step1(Session session) {
Query query = session
.createQuery("from Subscriber where username = :who");

169

170

CHAPTER 9 ©" USING THE SESSION

query.setString("who", username);
Subscriber s = (Subscriber) query.uniqueResult();
s.setUsername("dave");

}

public void step2(Session session) {

Query query = session
.createQuery("from Publisher where username = :who");

query.setString("who", username);
Publisher p = (Publisher) query.uniqueResult();
p.setUsername("dave");

}

15

// Run the first step of task A to completion

new Thread(taskA).start();

while (!taskA.isPaused());
System.out.println("Task A is complete (paused)");

// Run the first step of task B to completion

new Thread(taskB).start();

while (!taskB.isPaused());
System.out.println("Task B is complete (paused)");

// Both tasks have completed their first steps - we'll now
// release the brakes from both of them, and see what
// happens.

taskA.setPaused(false);
taskB.setPaused(false);

Caching

Accessing a database is an expensive operation, even for a simple query. The request has to
be sent (usually over the network) to the server. The database server may have to compile the
SQL into a query plan. The query plan has to be run and is limited largely by disk perform-
ance. The resulting data has to be shuttled back (again, usually across the network) to the
client, and only then can the application program begin to process the results.

Most good databases will cache the results of a query if we run it multiple times, eliminat-
ing the disk IO and query compilation times; but this will be of limited value if there are large
numbers of clients making substantially different requests. Even if the cache generally holds
the results, the time taken to transmit the information across the network is often the larger
part of the delay.

CHAPTER 9 ' USING THE SESSION

Some applications will be able to take advantage of in-process databases, but this is the
exception rather than the rule—and such databases have their own limitations.

The natural and obvious answer is to have a cache at the client end of the database con-
nection. This is not a feature provided or supported by JDBC directly, but Hibernate provides
one cache (the first-level cache) through which all requests must pass. A second-level cache is
optional and configurable.

The level 1 (L1) cache ensures that within a session requests for a given object from a
database will always return the same object instance, thus preventing data from conflicting
and preventing Hibernate from trying to load an object multiple times.

Items in the L1 cache can be individually discarded by invoking the evict() method
on the session for the object that you wish to discard. To discard all items in the L1 cache,
invoke the clear() method.

In this way, Hibernate has a major advantage over the traditional connected approach.
With no additional effort from the developer, a Hibernate application gains the benefits of a
client-side database cache.

Figure 9-2 shows the two caches available to the session. The compulsory L1 cache,
through which all requests must pass, and the optional level 2 (L2) cache. The L1 cache will
always be consulted before any attempt is made to locate an object in the L2 cache. You will
notice that the L2 cache is external to Hibernate and, though accessed via the session in a way
that is transparent to the user of Hibernate, is a pluggable interface to any one of a variety of
caches that are maintained on the same JVM as your Hibernate application, or on an external
JVM. This allows a cache to be shared between applications on the same machine or even
between multiple applications on multiple machines.

Database

Hibernate l _________

Optional
Session L2 Cache
A .
Y

Client

Figure 9-2. The session’s relationship to the caches

17

172

CHAPTER 9 ©" USING THE SESSION

In principle, any third-party cache can be used with Hibernate. An
org.hibernate.cache.CacheProvider interface is provided, which must be implemented to
provide Hibernate with a handle to the cache implementation. The cache provider is then
specified by giving the implementation class name as the value of the
hibernate.cache.provider class property.

In practice, the four production-ready caches, which are already supported, will be ade-
quate for most users (see Table 9-4).

Table 9-4. Level 2 Cache Implementations Supported “Out of the Box” by Hibernate

Cache Name Description

EHCache An in-process cache

0SCache An in-process cache

SwarmCache A multicast distributed cache

TreeCache A multicast distributed transactional cache

The type of access to the L2 cache can be configured on a per-session basis by selecting a
CacheMode (see Table 9-5) and applying it with the setCacheMode () method.

Table 9-5. CacheMode Options

Mode Description
NORMAL Data is read from, and written to, the cache as necessary.
GET Data is never added to the cache (although cache entries are invalidated when

updated by this session).

PUT Data is never read from the cache, but cache entries will be updated as they are
read from the database by this session.

REFRESH As for PUT, but the use_minimal puts Hibernate configuration option will be
ignored if it has been set.

IGNORE Data is never read from, or written to, the cache (except that cache entries will
still be invalidated when they are updated by this session).

The CacheMode setting does not affect the way in which the L1 cache is accessed.

The decision to use an L2 cache is not clear-cut. Although it has the potential to greatly
reduce access to the database, the benefits depend on the type of cache and the way in which
it will be accessed.

A distributed cache will cause additional network traffic. Some types of database access
may result in the contents of the cache being flushed before they are used—in which case it
will be adding unnecessary overhead to the transactions.

The L2 cache cannot account for the changes in the underlying data, which are the result
of actions by an external program that is not cache-aware. This could potentially lead to prob-
lems with stale data, which is not an issue with the L1 cache.

In practice, as with most optimization problems, it is best to carry out performance test-
ing under realistic load conditions. This will let you determine if a cache is necessary and help
you select which one will offer the greatest improvement.

CHAPTER 9 ' USING THE SESSION

Threads

Having considered the caches available to a Hibernate application, you may now be con-
cerned about the risk of a conventional Java deadlock if two threads of execution were to
contend for the same object in the Hibernate session cache.

In principle, this is possible—and unlike a database deadlock, Java thread deadlocks do
not time out with an error message. Fortunately, there is a very simple solution:

“Doctor, it hurts when I do this”
“Don’t do that then”

Do not share the Session object between threads. This will avoid all risks of deadlocking
on objects contained within the Session cache.

The easiest way to ensure that you do not use the same Session object outside the current
thread is to use an instance local to the current method. If you absolutely must maintain an
instance for a longer duration, maintain the instance within a ThreadLocal object. For most
purposes, however, the lightweight nature of the Session object makes it practical to con-
struct, use, and destroy an instance, rather than to store a session.

Summary

In this chapter, we have discussed the nature of the session object and how it can be used to
obtain and manage transactions. We have looked at the two levels of caching that are available
to applications, and how concurrent threads should manage sessions.

In the next chapter, we present a case study that draws the themes of the earlier chapters
together, showing how a Hibernate persistence layer should be constructed.

173

CHAPTER 10

Design Considerations with
Hibernate 3

In this chapter, we will look at a simple case study to show the steps required in designing the
persistence layer of a Hibernate-based application. Our application will be an order server,
taking orders from a web application, processing them against the product inventory, and
tracking the order status.

Most of the code and configuration information is omitted from this chapter for reasons
of space and because the specifics are covered in other chapters. You can download the source
with the code for the other chapters from the Downloads section of the Apress website
(http://www.apress.com).

We do not attempt to follow a standard methodology in depth in this example. Instead,
we try to illustrate the steps required when designing a Hibernate-based application. In par-
ticular, we do not delve too deeply into the intricacies of drawing up the initial requirements.

Application Requirements

As our first step in the design process, we need to specify the requirements incumbent upon
our order server. Our design is focused upon the persistence layer of the order server, rather
than the entire application, so we will express the requirements in terms of the operations that
are offered to client code.

Client code should be able to do the following:

* Add a product to the catalog

* Remove a product from the catalog

* Amend a product in the catalog

* List the products in the catalog

* Set the price of a product in the catalog

¢ Amend the price of a product in the catalog
¢ Specify the stock of a product

¢ Determine the stock of a product

175

176

CHAPTER 10 " DESIGN CONSIDERATIONS WITH HIBERNATE 3

 Place an order for a product

* Expedite an order for a product

Designing the Object Model

For a Hibernate persistence layer, our object model will consist primarily of the POJOs to
be persisted into and retrieved from the database, and the DAOs through which this will be
achieved.

Designing the POJOs

Taking the requirements listed previously, we scan for nouns to identify likely candidates for
our POJO objects. These are

e Client
e Product
e Catalog
e Price

e Stock

e Order

We will discard “Client” since we are assuming that client logic already exists. For our pur-
poses, this will essentially correspond to the test harness logic. We examine our classes in turn
and outline their attributes.

The Product consists of a Stock Keeping Unit (SKU) and a description.

The Price consists of the price and the Product with which it is associated.

The Catalog consists of the catalog name and a list of Products at specific Prices. We will
separate out the pairs of priced products as CatalogEntry classes. A Catalog, therefore, con-
sists of a set of CatalogEntry objects.

The CatalogEntry consists of a Product and a Price attribute.

The Stock consists of the number of units in stock and the Product with which it is associ-
ated.

The Order needs to represent the set of items that a customer has purchased, the price
that they were to be charged, and the number of units of each product that they were pur-
chasing. The combination of price, product, and quantity is usually referred to as a line item
(simply because it represents a single line on an invoice) and so we will refactor this out as a
LineItem class.

To recap, LineItems, therefore, consist of a Price, Product, and quantity attribute.

Our Order class now consists of a set of LineItem entries—but we would like to distinguish
between the orders that are pending and the orders that have been expedited. There are a
number of ways to represent this distinction, but we will select the simplest for our example,
and add an attribute to the Order class.

CHAPTER 10 /" DESIGN CONSIDERATIONS WITH HIBERNATE 3

To all of our classes, we will add an identifier attribute. This will represent the surrogate
key to be used in the tables. This is a convenience, not an absolute requirement, but on a new
build when all else is equal, it is preferable to include it.

Our refined class list is now

e (Client

e Product

e Catalog

e CatalogEntry
e Price, Stock
e Order

e LineItem

The class relationships in the Order Server model are shown in Figure 10-1.

Order Stock
+id +id
+lineltems +quantity
+expedited +product : Product
1 1
1.* Product 1
Lineltem +id
” ‘% +sku
+ 1 1~ | +description 1
+price : Price Catalog
+product : Product +id
+quantity +catalogEntries
1 1
1 1 1
Price 1 CatalogEntry
+id 1 +id
+price +product : Product
+product : Product +price : Price

Figure 10-1. The Order Server model

Having determined the classes and their attributes, you should create suitable POJOs to
represent them. By default, for each of these you should do the following:

» Provide a package, protected, or public default constructor.

* Keep the fields private—provide getter and setter methods for the attributes.

177

178

CHAPTER 10 " DESIGN CONSIDERATIONS WITH HIBERNATE 3

You may want to provide suitable constructors for creating the POJOs from within the
client code, and you will usually want to provide additional business logic methods. To deter-
mine these business methods, you should walk through the processes described in the
requirements specification and determine how each one would be achieved using the classes
that you have selected.

Listing 10-1 is a typical example of the sort of POJO class definition that you should end
up with. As with most of the examples in this book, we have removed the bulk of the com-
menting for reasons of brevity, but, in this case, we have retained the XDoclet markup tags
(see the sidebar later in this chapter) used to generate the corresponding mapping file.

Listing 10-1. The POJO Class Representing Our Catalog

package com.hibernatebook.casestudy.pojo;

import java.util.HashSet;
import java.util.Set;

/**

* @hibernate.class

* table="catalog"

*/

public class Catalog {
// The default constructor
// required by Hibernate
protected Catalog() {
}

// A convenience constructor for

// client code

public Catalog(String description) {
setDescription(description);

}

/K

* @hibernate.id column="1id"
* generator-class="native"

* type="int"

*/

public void setId(int id) {
this.id = id;

}

/x*

* @hibernate.set role="catalogEntries"
* table="catalog_catalogentry"

* cascade="save-update"

* @hibernate.collection-key

CHAPTER 10 " DESIGN CONSIDERATIONS WITH HIBERNATE 3 179

* column="catalog id"

* @hibernate.collection-many-to-many

* class="com.hibernatebook.casestudy.pojo.CatalogEntry"

* column="catalogentry id"

*/

public void setCatalogEntries(Set catalogEntries) {
this.catalogEntries = catalogEntries;

}

/**

* @hibernate.property column="description”

* type="string"

* not-null="true"

*/

public void setDescription(String description) {
this.description = description;

}

public int getId() {
return id;

}

public Set getCatalogEntries() {
return catalogEntries;

}

public String getDescription() {
return description;

}

private int id;
private Set catalogEntries = new HashSet();
private String description;

Our first requirement on the class list was that we should be able to add a product (one
that already exists in the database, or a newly created one) to the catalog. The steps necessary
to achieve this will be as follows:

1. Obtain a specific Catalog object.

2. Obtain a specific Product object.

3. Create a new CatalogEntry object.

4, Add the CatalogEntry object to the Catalog’s set of entries.

When they are not created directly, objects will be obtained from the database, so methods
to retrieve objects (or delete them) are immediate candidates for DAO methods. Creation of an
object is usually achieved through one of the constructors (though it can be a DAO method).

180

CHAPTER 10 " DESIGN CONSIDERATIONS WITH HIBERNATE 3

The catalog entry could be created and populated directly, or we could add a method directly to
the Catalog class to achieve this. Taking these factors into account, Listing 10-2 is a plausible
snapshot of the way we might want to achieve the requirement.

Listing 10-2. Plausible Code for Adding a Priced Product to a New Catalog

CatalogDAO dao = new CatalogDAO();

Catalog catalog = new Catalog("Spring Catalog");
Product product = new Product("Sunglasses","00000001");
Price price = new Price(product,4,45); // $4.45
dao.addProduct(catalog,product,price);

This exercise has forced us to consider the business methods to be added to the POJOs,
but it has also forced us to look at candidates for DAO methods, some primitive exception
handling, and the specifics of our currency representation (here we simply use dollars and
cents, but an internationalized application would need to represent this as a more abstract
Currency class).

Designing our DAOs

On completion of the exercises required to determine the business methods for the POJOs,
you should also find that you have a number of methods that are candidates for inclusion in
your DAOs. However, it may not be clear what DAOs are required.

You should attempt to align your DAOs with the operations that you want to perform
through them, rather than with the classes and database tables that they operate on. This will
make changing these implementation details a less fragile process. Note that there will often
be some correspondence between the DAOs selected and the POJOs but to a subset rather
than the complete list.

In our study, we would contend that the operations described in the requirements fall
into three broad categories:

* Catalog maintenance

¢ Add a product to the catalog.

e Remove a product from the catalog.

¢ Amend a product in the catalog.

e List the products in the catalog.

e Set the price of a product in the catalog.

* Amend the price of a product in the catalog.
* Stock management

* Specify the stock of a product.

¢ Determine the stock of a product.

CHAPTER 10 " DESIGN CONSIDERATIONS WITH HIBERNATE 3

e Order management
¢ Place an order for a product.
¢ Expedite an order for a product.
Thus, we will create three DAOs:
* CatalogDAO
e StockDAO
e OrderDAO

Of our seven classes selected as POJOs, the DAOs are closely (but not directly) related to
three of them. The candidate methods selected should be distributed between them such that
the method and its DAO are clearly related; if the relationship seems forced, then you should
consider adding a new DAO to accommodate it, or rethink the selection of DAOs. For example,
it would probably be inappropriate to add an assignNewClient method to the ProductDAO in
response to a new requirement. This sort of conflict suggests a need for new classes to be
added to the design, or for some refactoring of the existing classes.

In Listing 10-3, we show the initial parts of a typical correct DAO implementation that
implement the methods for managing operations closely pertaining to the catalog.

Listing 10-3. The Beginning of Our CatalogDAO Implementation

public class CatalogDAO extends DAO {
public CatalogDAO()
throws DAOException
{
super();

}

public void addProduct(Catalog catalog,
Product product,
Price price)
throws DAOException

Session session = null;

Transaction tx = null;

try {
session = getSession();
tx = session.beginTransaction();
CatalogEntry entry =

new CatalogEntry(product,price);

catalog.getCatalogEntries().add(entry);
session.saveOrUpdate(catalog);
tx.commit();

} catch(HibernateException e) {

181

182

CHAPTER 10 " DESIGN CONSIDERATIONS WITH HIBERNATE 3

rollback(tx);
throw new DAOException(
"Could not add product: " + product,e);

} finally {
close(session);
}
}
// etc.

Mapping with Hibernate

Having created the POJOs to your satisfaction, the next step will be to represent the mappings
(see Listing 10-4). We looked at the basics of mapping file creation in Chapter 3 and the
format of the mapping file in detail in Chapter 6, so you should refer to those chapters for

the details of this step.

Listing 10-4. A Typical Mapping File Corresponding to Our Catalog Class

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping
>
<class
name="com.hibernatebook.casestudy.pojo.Catalog"
table="catalog"
>

<id

name="1id"

column="id"

type="int">

<generator class="native"/>
</id>

<set
name="catalogEntries"
table="catalog catalogentry"
lazy="false"
cascade="save-update"
sort="unsorted">

<key
column="catalog id"/>

CHAPTER 10 /" DESIGN CONSIDERATIONS WITH HIBERNATE 3

<many-to-many
class="com.hibernatebook.casestudy.pojo.CatalogEntry"
column="catalogentry id"
outer-join="auto"/>

</set>

<property
name="description”
type="string"
update="true"
insert="true"
column="description”
not-null="true"/>

</class>

</hibernate-mapping>

In general, the process is simply one of expressing the relationships between the POJOs
and their underlying tables. There are some basic decisions to make, of course—you need to
decide how the primary key will be handled and what constraints should apply. There are also
some performance design decisions to make—specifically, the selection of indexes for your
tables.

XDOCLET

Hibernate 2 had a CodeGenerator tool that allowed you to create a skeleton Hibernate mapping file directly
from your POJOs. Hibernate 3 no longer provides this tool. Instead, you can use the new Annotations facility
(see Chapter 4), but currently this is still at a beta release level, and even with a production release it will
oblige you to use Java 5, which may not be an option for many users.

We suggest that as an interim measure you should use XDoclet and its associated markup tags. The
XDoclet XML generation tool allows you to use JavaDoc style @ tags in the comments preceding classes and
methods to indicate how you would like these to be represented in the mapping files. The tool integrates into
your Ant build tool and we think it works well in reducing the burden of this task on the developer. It is worth
getting to know XDoclet even if you decide to use other mechanisms for mapping file generation, as the tool
can be used for generation of XML files in @ number of other circumstances. See the XDoclet home page at
http://xdoclet.sourceforge.net/xdoclet/index.html for more details.

See the sample code for this chapter for examples of XDoclet style markup.

An alternative to annotations and XDoclet is the Midd1leGen tool (http://boss.bekk.no/boss/
middlegen/), which takes the reverse view and generates code from your mapping files. You could also
consider the Hibernate tools project (http://tools.hibernate.org/) that includes Eclipse IDE plug-ins
to generate mappings—nbut this is currently only at an alpha release level of maturity.

183

184

CHAPTER 10 " DESIGN CONSIDERATIONS WITH HIBERNATE 3

Creating the Database Schema

As we have recommended in earlier chapters, you should generate your schema twice, once
by hand, and once using the SchemaExport tool (which we discussed in Chapter 3) from your
mappings. You should then spend some time reconciling the two designs.

For example, in this chapter we essentially assign a table for each class. In a traditional
database schema, we could potentially have placed the stock figure and the price of the items
as columns in the product table. However, this would cause substantial complications if the
format of the price were to change; for example if we suddenly decided that we needed to
accommodate multiple currencies, we would need to arrange for a single product to have a
number of different prices. We might also want to assign a single price instance to a number
of products that differed only in color. Our selected approach permits all of these changes or
differing usages to be applied with minimal disruption to unrelated parts of the schema.

The aims of the hand-designed process are to ensure that you are familiar with your
schema and to ensure that you have considered issues such as indexing, uniqueness con-
straints, not-null constraints, as well as the sensible naming of tables, keys, views, and indexes.

Tip We recommend that a standard for pluralization of table names be selected. We prefer the singular
form—thus the Order and Catalog tables, rather than Orders and Catalogs—but it does not matter much.
The point is that all tables should have the same form, which in turn ensures that your programmers will
not have to keep cross-referencing the schema design when constructing SQL queries and modifying map-
ping files.

The aim of the mapping file-generated schema is simply to provide you with a point of
comparison against the manually generated file. As you compare the two schemas, you will
almost always find disparities between them. When the disparities are in the names of the
objects, you should prefer your manually generated names. However, when they are in the
structures of the objects (a missing foreign key, a missing table, etc.), this can indicate several
scenarios:

* You may have made a mistake in your manual schema design.
¢ You may have made a mistake in your mapping file specification.
* You may have made a mistake in your class design.

The first scenario is fairly benign (but it helps indicate which parts of the schema may
need more documentation for unwary developers). The latter pair, however, must be reme-
died immediately. In Listing 10-5, we show a generated schema that has been through these
iterations and is now correct.

Listing 10-5. A Typical (Generated) Schema to Represent the Catalog Entity

create table catalog (
id int4 not null,
description varchar(255) not null,

CHAPTER 10

primary key (id)
)

create table catalog catalogentry (
catalog_id int4 not null,
catalogentry id int4 not null,
primary key (catalog id, catalogentry id)
)

create table catalogentry (
id int4 not null,
price int4 not null,
product int4 not null,
primary key (id)

)

alter table

catalog_catalogentry
add

constraint FK620D8A5F505ECF25
foreign key

(catalog id) references catalog

alter table
catalog_catalogentry
add
constraint FK620D8A5F5240A1CF
foreign key
(catalogentry id) references catalogentry

alter table

catalogentry
add

constraint FKBBE8BCFF96CD3E95D
foreign key

(price) references price

alter table

catalogentry
add

constraint FKBBE8CFF9882999E9
foreign key

(product) references product

DESIGN CONSIDERATIONS WITH HIBERNATE 3

Once your manual and generated schemas agree, you have consonance between your
mental model, class model, and mapping of the relationships between database entities and
objects, and you are ready to implement the rest of your application.

185

186

CHAPTER 10 " DESIGN CONSIDERATIONS WITH HIBERNATE 3

The Java Application

Your client Java code is now reliant upon your DAOs for its access to the database. There are
several ways in which they can be managed, which to some extent depend, in turn, on the
context within which you will run them.

You can make them “stand alone.” This has the advantage that the client code is entirely
independent of the underlying data mechanism. Unfortunately, a problem then arises when
you come to define the transaction boundaries of your calls into the DAOs.

If you are running within a context that supports Java Transaction Service (JTS; basically
in a J2EE server) and your DAOs acquire their Hibernate transactions through the Java Trans-
action API via a JTATransactionFactory (configurable with the hibernate.transaction.
factory property), then the DAO transactions will join any extant JTS transaction. So, you can
manage the scope of your transaction across the boundaries of the DAOs. You will also need to
set the auto_close_session and flush_before completion configuration flags to ensure that
your data is committed properly.

If your client code will not have the luxury of JTS, then you will have to compromise the
design in one of two ways.

The first (and probably the preferred) approach is to maintain the transaction boundaries
within the lifespan of the DAO. In our case study, changes to the Catalog, Stock, and Orders are
mostly orthogonal to each other; you will not generally have a need to manage a transaction
across these boundaries anyway, so you can add explicit transaction management to the three
DAOs and allow them to operate independently. Where a problem arises (such as trying to
update the stock of a product while an order for it is being expedited), your client will be
informed of this via the normal exception mechanism.

Your second option is to make your client code responsible for acquiring the session, or at
least managing the transaction associated with the session, when accessing the DAOs. While
this does not present any particular technical obstacles, it means that your DAOs will not be
as generic as they otherwise could be—your client code will have a dependency upon Hiber-
nate’s way of doing things. Often this approach will indicate that there is a design error in your
choice of DAOs, but as long as your application does not need to be portable to another ORM
mechanism (and the likelihood of such a move is sometimes overrated), it can at least be con-
sidered.

Caution Do not forget the preferred scope of the SessionFactory and the Session objects.
SessionFactory is once per application per database. Use a suitable singleton class to enforce
this. Sessions are once per thread. Use ThreadlLocal variables to enforce this, or use the built-in
SessionFactory.getCurrentSession() method available in Hibernate 3.0.1 and higher.

With your DAOs in place and a policy to allow your client code access to appropriate
transactionality, the world is your oyster. Only support and enhancements cloud the horizon;
if you have followed our design recommendations and documented your decisions, then your
Hibernate-based application will doubtless be a credit to you.

CHAPTER 10 " DESIGN CONSIDERATIONS WITH HIBERNATE 3

Summary

In this chapter we have shown you the basic steps required to design a persistence layer based
on Hibernate. We have looked at the steps involved in selecting the POJO and DAO classes,
and we have looked at some of the steps you can take to help verify your database design.

There is no upper limit on how much one can write on the various design methodologies
currently in widespread use, but we hope this chapter gives you a good feel for how the use of
Hibernate impacts the design process.

In the next chapter, we look at two closely related features: Events that are new with
Hibernate 3, and Interceptors that are broadly unchanged since version 2.

187

CHAPTER 11

Events and Interceptors

Applications often require custom behavior from the persistence layer that is not directly
a part of the application. Hibernate 2 provided the notion of Interceptors—essentially call-
backs—allowing your custom code to be invoked as Hibernate carried out its persistence
logic. Your code could, thus, eavesdrop on (but not interfere with) Hibernate’s behavior.

In Hibernate 3, the capabilities have been extended with Events and Listeners so that
your custom logic can be invoked by Hibernate instead of its own persistence logic. The
default behavior is available to you, so by calling it you can imitate the behavior of intercep-
tors, but you can also change the behavior entirely.

While there is obviously some overlap in the capabilities of these two techniques, they
answer broadly different types of problems, so the Events of Hibernate 3 supplement, rather
than supplant, the Interceptors of Hibernate 2.

Interceptors

Interceptors are privy to a blow-by-blow account of what is going on as Hibernate carries out
its duties. While you can listen in, you can only make limited changes to the way in which
Hibernate actually behaves. This is the common requirement; unless you are making substan-
tial changes to the persistence behavior, you will usually want only to track what is going on.

Financial packages often require considerable auditing information to be maintained to
prevent fraud and aid accountability. Auditing is a natural candidate for implementation as an
interceptor, as it would normally require that no changes be made to the persistence process
atall.

The question that usually arises when discussing interceptors is “why not use triggers?”
Triggers should never embody application logic, only business logic. If any application is
going to have audit-free access to the database, we cannot implement the auditing in triggers.
Worse, the triggers may not have access to the user information that’s needed. In most multi-
tier situations, the need to pool the database connections precludes establishing individual
user logins to the database, so the trigger only knows that the user login “MonolithicApplica-
tion” carried out an update of last year’s sales figures, not “Jim from accounts,” which is who
the auditors are likely to be interested in!

Hibernate 3 supports most of the original API with little change, but also extends it by
adding additional methods to the Interceptor interface, making much finer distinctions
between application states possible. Table 11-1 summarizes the points in the application life-
cycle at which the various methods will be invoked, and indicates which are available in each
version.

189

190

CHAPTER 11

EVENTS AND INTERCEPTORS

Table 11-1. The Interceptor Methods Hibernate 2 and 3

Name v2 v3 Invoked when. .. Comments
afterTransactionBegin yes yes Immediately after a This method can
call to begin() ona change the state of
Transaction object the transaction—for
retrieved from the example, it can call
Session. rollback().
instantiate yes yes When the Session Because the “empty”
needs to create an object can be created
entity instance. here, this allows
Hibernate to use
entities, which do not
have a default
constructor (in legacy
applications, for
example).
getEntity no yes When an entity not in
the Session’s own
cache is requested by
its identifier.
getEntityName no yes When the Session
needs to determine
the name of a given
entity.
onLoad yes yes Immediately before an The loading can be
entity objectis overridden (by
populated from the returning false), and
database. the instantiated, but
uninitialized object,
is available if
supplementary
initialization from the
listener is needed.
findDirty yes yes Duringcalls to flush(). Allows the saving of
changes to attributes
to be prevented or
forced.
isTransient no yes When the Session This replaces the
needs to determine if isUnsaved() method
an entity it has been in version 2.
asked to persist is
transient—for
example, during calls
to saveOrUpdate().
isUnsaved yes no Replaced by
isTransient().
onSave yes yes Before an objectis saved. Permits the state of the

object to be changed
immediately before it is
saved.

CHAPTER 11 " EVENTS AND INTERCEPTORS

Name

v2

v3

Invoked when . ..

Comments

onDelete

preFlush

onFlushDirty

postFlush

beforeTransactionCompletion

afterTransactionCompletion

yes

yes

yes

yes

no

no

yes

yes

yes

yes

yes

yes

Before an object is saved.

Immediately before
the Session is flushed.

During a call to
flush() after entities
have been determined
to be dirty.

After the Session is
flushed, if and only if
the Session had to
carry out SQL
operations to
synchronize state
with the database.

Immediately prior to
the completion of a
transaction.

Immediately after the
completion of a
transaction.

The object’s state
should not be tampered
with at this point.

This method can
change the state of the
transaction—for
example, it can call
rollback().

An Example Interceptor

To illustrate how all this works in practice, we will create a simple interceptor from scratch.
While the auditing example is a good one, it is rather too involved for our demonstration.
Instead, we will consider a concert hall seat-booking system (see Listing 11-1) where the
details of bookings will be sent out to customers as they are pushed into the database.

Listing 11-1. The Booking POJO

package com.hibernatebook.chapterii.events;

public class Booking {

public Booking(String name, String seat) {

this.name = name;
this.seat = seat;

}

Booking() {
}

191

192 CHAPTER 11 [EVENTS AND INTERCEPTORS

protected String getName() {
return name;

}

protected void setName(String name) {
this.name = name;

}

protected String getSeat() {
return seat;

}

protected void setSeat(String seat) {
this.seat = seat;

}

private String seat;
private String name;

Interceptors have to override the org.hibernate.Interceptor interface. You can seta
global interceptor for the configuration (see Listing 11-2), or you can apply interceptors on a
per-session basis. You have to install the interceptor programmatically—there is no syntax for
specifying this in the Hibernate configuration file.

Listing 11-2. Installing a Global Interceptor

package com.hibernatebook.chapterii.events;

import org.hibernate.Session;

import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.Configuration;

public class MailingExample {
public static void main(String[] argv) {
Configuration config = new Configuration();

// Apply this interceptor at a global level...
config.setInterceptor(new BookingInterceptor());

SessionFactory factory = config.configure().buildSessionFactory();
Session session = factory.openSession();

// A local interceptor could alternatively
// be applied here:
// session.setInterceptor(new BookingInterceptor());

CHAPTER 11 " EVENTS AND INTERCEPTORS

Transaction tx = session.beginTransaction();

// Make our bookings...
session.save(new Booking("dave","F1"));
session.save(new Booking("jeff","C3"));

// The confirmation letters should not be sent
// out until AFTER the commit completes.
tx.commit();

The interceptor that we are applying is going to capture the information from the Booking
objects that we are storing in the database. Listing 11-3 demonstrates the basic mechanism,
but it is only a toy example. We will discuss some of its deficiencies in a moment.

Listing 11-3. An Interceptor Implementation

package com.hibernatebook.chapterii.events;

import java.io.Serializable;
import java.util.Collection;
import java.util.HashSet;
import java.util.Iterator;

import org.hibernate.CallbackException;
import org.hibernate.EntityMode;

import org.hibernate.Interceptor;
import org.hibernate.Transaction;
import org.hibernate.type.Type;

public class BookingInterceptor implements Interceptor {

public BookingInterceptor() {
¥

private ThreadlLocal stored = new ThreadlLocal();

public void afterTransactionBegin(Transaction tx) {
stored.set(new HashSet());

}

public void afterTransactionCompletion(Transaction tx) {
if (tx.wasCommitted()) {
Iterator i = ((Collection) stored.get()).iterator();
while (i.hasNext()) {
Booking b = (Booking) i.next();
sendMail(b);

193

194 CHAPTER 11 [EVENTS AND INTERCEPTORS

}
}
stored.set(null);

}

public boolean onSave(Object entity, Serializable id,
Object[] state, String[] propertyNames, Type[] types)
throws CallbackException {

((Collection) stored.get()).add(entity);
return false;

}

private void sendMail(Booking b) {
// Here we would actually send out the email
System.out.print("Name: " + b.getName());
System.out.println(", Seat: " + b.getSeat());

}

public void beforeTransactionCompletion(Transaction tx) {

}

public int[] findDirty(Object entity, Serializable id,
Object[] currentState, Object[] previousState,
String[] propertyNames, Type[] types) {

return null;

}

public Object getEntity(String entityName, Serializable id)
throws CallbackException {
return null;

}

public String getEntityName(Object object) throws CallbackException {
return null;

}

public Object instantiate(String entityName, EntityMode entityMode,
Serializable id) throws CallbackException {
return null;

}

public Boolean isTransient(Object object) {
return null;

}

CHAPTER 11 " EVENTS AND INTERCEPTORS

public void onDelete(Object entity, Serializable id, Object[] state,
String[] propertyNames, Type[] types) throws CallbackException {
}

public boolean onFlushDirty(Object entity, Serializable id,
Object[] currentState, Object[] previousState,
String[] propertyNames, Type[] types) throws CallbackException {
return false;

}

public boolean onlLoad(Object entity, Serializable id,
Object[] state, String[] propertyNames, Type[] types)
throws CallbackException {

return false;

}

public void postFlush(Iterator entities) throws CallbackException {
}

public void preFlush(Iterator entities) throws CallbackException {
}

Our interceptor makes use of the afterTransactionBegin() method to prepare to collect
booking details, the onSave () method to do so, and the afterTransactionCompletion() to
report the successful bookings. This sequence guarantees that bookings will not be reported
to the users until after we are confident that they have been retained in the database.

A minor deficiency of this implementation is that the email is sent outside the transac-
tion—a system failure immediately after the commit completes could cause the email not to
be sent. In our scenario, this is unimportant because email is already an unreliable transport
mechanism, but there are other situations, such as the auditing example discussed earlier,
where this may be unacceptable. In these cases, interception may not be appropriate and an
integrated solution tied into a two-phase—commit transaction may be required.

More importantly, our example assumes that the Booking object will not be altered

between its addition to the set of emails to be sent and their transmission. This is an extremely

dangerous assumption! A safer approach would be to create copies of the Booking objects or,
better yet, to copy their data into a more appropriate object, as seen in Listing 11-4.
Listing 11-4. A Better Approach to Preparing the Mailshot

public boolean onSave(Object entity, Serializable id,
Object[] state, String[] propertyNames, Type[] types)
throws CallbackException

if(entity instanceof Booking) {

195

196

CHAPTER 11 [EVENTS AND INTERCEPTORS

Booking booking = (Booking)entity.
Mailshot mailshot = new Mailshot(booking.getName(), booking.getSeat());
((Collection) stored.get()).add(mailshot);

}

return false;

}

Finally, we don’t necessarily have enough information to prepare our mailshot—the email
address may be missing. If the name field actually represents the email address, then we are
fine, but if it represents a key into other objects, and hence tables in the database, then we
have to be careful. It is possible to write database logic from within an interceptor, but the risk
of accidentally recursing back into your interceptor logic is high, so we don’t recommend it.
It’s slightly less tricky if you are only using a session-scoped interceptor, but there are probably
safer ways to achieve the same end result.

In this example, the methods that we are not using have been given a default implemen-
tation. You will note that some of these methods return null, or false. These methods are
permitted to change the data that is preserved or returned by the session. Returning to the
onSave method, we will consider another possible implementation, as shown in Listing 11-5.

Listing 11-5. Changing the Data from Within an Interceptor

public boolean onSave(Object entity, Serializable id,
Object[] state, String[] propertyNames, Type[] types)
throws CallbackException

{
if(entity instanceof Booking) {
state[1] = "unknown";
}
return true;
}

Here we are altering the state array. This contains the values of each of the objects’ fields
that are to be stored (in the order defined in the mapping file). In our Booking class, field 0 is
the id, field 1 is the name, and field 2 is the seat, so here we have changed the name value to
be preserved in the database. Returning true causes Hibernate to reflect this change when it
saves the data. If we left the return flag as false, nothing would happen when the method
was called.

The temptation is to assume that returning false guarantees the safety of the data to be
preserved, but, in fact, this is not the case. The state array represents copies of the data to be
preserved, but we have also been given access to the actual object (entity) that contains the
original values. If you amend the fields of the entity before returning, the flag will not prevent
your changes from being made. Listing 11-6 illustrates how this might occur.

Listing 11-6. Changing the Data in an Unorthodox Way

public boolean onSave(Object entity, Serializable id,
Object[] state, String[] propertyNames, Type[] types)
throws CallbackException

CHAPTER 11 " EVENTS AND INTERCEPTORS

if(entity instanceof Booking) {
Booking booking = (Booking)entity;
booking.setName("unknown");
}
// The flag can't save us from ourselves here!
return false;

}

Again, this is probably not the best way to make the changes, but it can be useful where
you already have a considerable body of logic prepared to process the entity type.

Events

Hibernate 3 actually implements most of its functionality as event listeners. When you register
a listener with Hibernate, the listener entirely supplants the default functionality. If you then
choose not to do anything with the associated event, the event is lost completely.

If you look at the implementation of the Session (see Listing 11-7), you'll see why this is
the case. Most of the methods have a form very similar to the following:

Listing 11-7. The Implementation of a Typical Method in Session

SaveOrUpdateEvent event = new SaveOrUpdateEvent(entityName, obj, this);
listeners.getSaveOrUpdateEventListener().onSaveOrUpdate(event);

The listeners field is an instance of SessionEventListenerConfig which provides the
requested EventListener, or the default if none is specified. So, if your EventListener is pro-
vided and doesn’t call the default one, nothing else can.

EventListeners are always registered globally for the event that they handle. You can reg-
ister them in the configuration file or programmatically. Either way, you will need to map your
implementation of one of the interfaces to the associated types, which you can look up in
Table 11-2 (the names are almost-but-not-quite standardized!).

Table 11-2. The Listener Names and Their Corresponding Interfaces

Type Name Listener

auto-flush AutoFlushEventlListener
merge MergeEventListener
Create CreateEventlListener
delete DeleteEventListener
dirty-check DirtyCheckEventListener
evict EvictEventlListener
flush FlushEventlListener

flush-entity
load
load-collection

FlushEntityEventlListener
LoadEventListener

InitializeCollectionEventListener

Continued

197

198

CHAPTER 11 [EVENTS AND INTERCEPTORS

Table 11-2. Continued

Type Name Listener

lock LockEventListener
refresh RefreshEventlListener
replicate ReplicateEventListener
save-update SaveOrUpdateEventListener
pre-load PreLoadEventlListener
pre-update PreUpdateEventListener
pre-delete PreDeleteEventListener
pre-insert PreInsertEventListener
post-load PostLoadEventListener
post-update PostUpdateEventListener
post-delete PostDeleteEventListener
post-insert PostInsertEventlListener

So, for example, your listener for the SaveOrUpdateEvent is mapped to the type name
save-update, must implement the SaveOrUpdateEventListener interface, and would normally
have been implemented by the DefaultSaveOrUpdateEventListener class. It is wise to follow a
similar convention with your own naming, so your mapping file listener entry might read
like this:

<listener type="save-or-update"
class="com.hibernatebook.chapter11.BookingSaveOrUpdateEventListener"/>

Alternatively, a programmatic registration of the same event would be given thus:

Configuration config = new Configuration();
config.setlistener("save-update", new BookingSaveOrUpdateEventlListener());

Because they override the default behavior, events are suitable for situations in which
you want to fundamentally change the Session’s behavior—particularly if you want to prevent
a certain event from being processed. Probably the best example of this requirement is in
authorizing access to the database, and, in fact, Hibernate provides a set of event listeners for
just this purpose. The four events listeners in question override the PreDelete, PreUpdate,
PreInsert, and PrelLoad listeners. The logic in each case in pseudocode runs something
like this:

if(user does not have permission) throw RuntimeException
Invoke default listener..

Because events are invoked in the same thread as the user’s call to the session, the result
of an exception in the first step will be an exception (actually a security exception) as the
unprivileged user carries out the relevant operation.

CHAPTER 11 " EVENTS AND INTERCEPTORS

To enable policy configuration of security, you would add the following:

<listener type="pre-delete"
class="org.hibernate.secure.JACCPreDeleteEventListener"/>
<listener type="pre-update"
class="org.hibernate.secure.JACCPreUpdateEventListener"/>
<listener type="pre-insert"
class="org.hibernate.secure.JACCPreInsertEventListener"/>
<listener type="pre-load"
class="org.hibernate.secure.JACCPreLoadEventListener"/>

An Example Event Listener

Before we get stuck in a simple example, a word of caution: events are very much an exposed
part of the inner workings of the Session. While this is ideal for something requiring the level
of interference of a security tool, you will not need this for most purposes. Listing 11-8 is more
in the nature of an illustrative “hack” than a real solution. In a real application, you would
probably solve this particular problem either within the body of the application, by using inter-
ceptors, or by using triggers.

Our example assumes a scenario similar to the one we used for our example Interceptor,
but now we would like to prevent the booking of certain seats from being persisted to the
database from the application.

Listing 11-8. Programmatically Installing an Event Listener

public class EventExample {
public static void main(String[] args) {
Configuration config = new Configuration();

// Apply this event listener (programmatically)
config.setlistener("save-update", new BookingSaveOrUpdateEventlListener());

SessionFactory factory = config.configure().buildSessionFactory();
Session session = factory.openSession();

Transaction tx = session.beginTransaction();

// Make our bookings... seat R1 is NOT to be saved.
session.saveOrUpdate(new Booking("charles","R1"));
session.saveOrUpdate(new Booking("camilla","R2"));

// The confirmation letters should not be sent
// out until AFTER the commit completes.
tx.commit();

199

200 CHAPTER 11 [EVENTS AND INTERCEPTORS

Our example is only going to implement the SaveOrUpdateEventListener interface. You
will notice that in Listing 11-8, the original calls to Session.save() have been replaced with
calls to Session.saveOrUpdate(). There is a close correspondence between the methods on
the Session interface and the event listeners with similar names. A call to Session.save()
will not invoke Session.saveOrUpdate() or vice versa. Try using the save() method in the
EventExample and you will see that the BookingSaveOrUpdatelistener is not invoked. In
Listing 11-9, we present the logic of the listener registered in Listing 11-8.

Listing 11-9. The Implementation of an Event Listener

package com.hibernatebook.chapterii.events;
import java.io.Serializable;

import org.hibernate.HibernateException;
import org.hibernate.event.SaveOrUpdateEvent;
import org.hibernate.event.def.DefaultSaveOrUpdateEventListener;

public class BookingSaveOrUpdateEventListener
extends DefaultSaveOrUpdateEventlListener
{
public Serializable onSaveOrUpdate(SaveOrUpdateEvent event)
throws HibernateException {
if(event.getObject() instanceof Booking) {
Booking booking = (Booking)event.getObject();
System.out.println("Preparing to book seat " + booking.getSeat());

if(booking.getSeat().equalsIgnoreCase("R1")) {
System.out.println("Royal box booked");
System.out.println("Conventional booking not recorded.");

// By returning null instead of invoking the
// default behavior, we prevent the invocation
// of saveOrUpdate on the Session from having
// any effect on the database!

return null;

}

// The default behavior:
return super.onSaveOrUpdate(event);

CHAPTER 11 " EVENTS AND INTERCEPTORS

Summary

In this chapter, we have looked at the powerful ways in which interceptors and events can be
used to enhance the Hibernate lifecycle. Hopefully you've gained an appreciation of the
advantages and risks that these techniques can confer.

Much as Interceptors and Events are analogous to database triggers, in the next chapter
we look at how we can create Filters, which offer a way of constraining results that is similar
to views.

201

CHAPTER 12

Hibernate Filters

Many applications do not need to work with all of the data in a table at once. In these cases,
we can create a Hibernate filter to work only with a subset of data. Filters provide a way for
your application to limit the results of a query to data that passes through the filter. Filters are
not a new concept—you could do the same thing with database views, or maintain the logic in
your application. Hibernate offers a centralized management system for these filters that will
help clean up your application’s data access layers over an application-specific solution.

Creating custom views for your tables in the database is another solution, but these tend
to be inflexible. Hibernate filters can be enabled or disabled during a Hibernate session. In
addition, Hibernate filters can take parameters that become very useful when you build an
application on top of Hibernate that uses security or personalization.

Note Hibernate 3 introduces new filter functionality. The filter() methods on the Session interface
from Hibernate 2 are deprecated—the Hibernate 3 functionality has a slightly different purpose.

Where to Use Filters

As an example, let us consider a web application that manages user profiles. Currently, your
application presents all users through the same web interface, but you received a requirement
from your end user that specifies that active users and expired users should now be managed
separately. For this example, the status is stored as a column on the user table. One way to
solve this problem is to rewrite every SELECT HQL query in your application to add a WHERE
clause that specifies the user’s status. Depending on how you built your application, this could
be an easy undertaking or it could be complex, but you still end up modifying code you already
tested thoroughly and changing it in many different places. With Hibernate 3, another way to
solve the problem would be to create a filter for user status for the application. After your end
user selects which set of users to work with (active or expired), your application activates the
user status filter (with the proper status) for the end user’s Hibernate session. Now any SELECT
queries will return the correct subset of results, and the relevant code for the user status is
limited to two locations: the Hibernate session and the user status filter.

Conceptually, you could use a WHERE clause in your queries to accomplish the same thing
as Hibernate filters. You could also create a view in your database (if your database supports
views). In all three cases, you are limiting the results of your query by imposing one or more

203

204

CHAPTER 12 I/ HIBERNATE FILTERS

conditions on the results. The advantages of Hibernate filters are that you can programmati-
cally turn filters on or off in your application code, and your filters are defined in your
Hibernate mapping documents for easy maintainability. The major disadvantage of filters is
that you cannot create new filters at runtime. Instead, any filters your application requires
need to be specified in the proper Hibernate mapping document. Although this does sound
very limiting, filters can be parameterized. For our user status filter example, only one filter
would need to be defined in the mapping document (although in two parts). That filter would
specify that the status column would need to match a named parameter. You would not need
to define the possible values for status in the Hibernate mapping document—the application
can specify those parameters at runtime, so the system is fairly flexible.

Although it is certainly possible to write applications with Hibernate that do not use filters,
we have found them to be a very good solution to certain problems (notably, security and per-
sonalization). Along with interceptors, filters provide a way to implement application-wide
logic in one well-defined place.

Defining Filters

The first step is to define filters in your application’s Hibernate mapping documents, using
the <filter-def> XML element. These filter definitions contain the name of the filter and the
names and types of any filter parameters. Specify filter parameters with the <filter-param>
XML element. Filter parameters are similar to named parameters for HQL queries. Both use a
: in front of the parameter name. Here is an example of a Hibernate mapping document with
a filter definition:

<?xml version='1.0' encoding="utf-8'?>

<IDOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
<class ...

</class>
<filter-def name="latePaymentFilter">
<filter-param name="dueDate" type="date"/>
</filter-def>
</hibernate-mapping>

After you create the filter definitions, you need to attach the filters to class or collection
mapping elements. You can attach one filter to more than one class or collection. In either
case, you add a <filter> XML element. The <filter> XML element has two attributes:
name and condition. The name refers to a filter that was defined earlier (for instance,
latePaymentFilter). The condition corresponds to a WHERE clause in HQL. Here is an example:

<class ...
<filter name="latePaymentFilter" condition=":dueDate = paymentDate"/>
</class>

CHAPTER 12 " HIBERNATE FILTERS

Each <filter> XML element needs to correspond to a filter definition that you have
already defined. You may have more than one filter for each filter definition, and each class
can certainly have more than one filter. This is a little confusing—the extra level of abstraction
allows you to define all of the filter parameters in one place and then refer to them in the indi-
vidual filter conditions.

Using Filters in Your Application

Your application programmatically determines which filters to activate or deactivate for a
given Hibernate session. Each session can have a different set of filters with different values
for the parameters. By default, all sessions have no active filters—you will need to enable fil-
ters programmatically for each session. The Session interface contains several methods for
working with filters:

e public Filter enableFilter(String filterName)
e public Filter getEnabledFilter(String filterName)
e public void disableFilter(String filterName)

Each of these methods is new to Hibernate 3, as is the org.hibernate.Filter
interface. The enableFilter(String filterName) method activates the specified filter, the
disableFilter(String filterName) method deactivates the method, and if you have previ-
ously activated the named filter, getEnabledFilter(String filterName) retrieves the filter.
The Filter interface has five methods. You are unlikely to use validate(); Hibernate uses
that method when it processes the filters. The other four methods are

e public Filter setParameter(String name, Object value)

e public Filter setParameterList(String name, Collection values)
e public Filter setParameterList(String name, Object[] values)
e public String getName()

The setParameter () method is the most useful. You can substitute any Java object for the
parameter, although its type should match the type you specified for the parameter when you
defined the filter. The two setParameterList() methods are useful for doing IN clauses in your
filters. If you want to do BETWEEN clauses, use two different filter parameters with different
names.

After you enable a filter on the session, you do not have to do anything else to your appli-
cation to take advantage of filters. Your application can run unchanged, except for the filters,
as we demonstrate in the following example.

Basic Filtering Example

Because filters are a relatively straightforward concept, a basic example allows us to demon-
strate most of the filter functionality, including both activating filters and defining filters in
mapping documents.

205

206

CHAPTER 12 I/ HIBERNATE FILTERS

In the following Hibernate XML mapping document (User.hbm.xml), we created a filter
definition called activatedFilter. When you define a filter, you need to use the <filter-def>
XML element, and provide a name for the filter. Any parameters for the filter should be speci-
fied with <filter-param> XML elements, as shown in Listing 12-1 with the activatedParam
XML element. You need to specify a type for the filter parameter so Hibernate knows how to
map values to parameters. After you define a filter, you need to attach the filter definition to a
class. At the end of our User class definition, we specified a filter named activatedFilter that
corresponds to the filter we defined. We also need to set a condition for the attached filter. In
our case, we used :activatedParam = activated, where :activatedParamis the name of the
parameter we specified on the filter definition, and activated is the column name for the user
table. One important piece of information to note is that the parameter should go on the left-
hand side so Hibernate’s generated SQL doesn'’t interfere with any joins.

Listing 12-1. Hibernate XML Mapping for User

<?xml version='1.0' encoding="utf-8'?>

<IDOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
<class name="com.hibernatebook.filters.User">
<id name="id" type="int">
<generator class="native"/>
</id>

<property name="username" type="string" length="32"/>
<property name="activated" type="boolean"/>
<filter name="activatedFilter" condition=":activatedParam = activated"/>
</class>
<filter-def name="activatedFilter">
<filter-param name="activatedParam" type="boolean"/>
</filter-def>
</hibernate-mapping>

After we created the filter definition and attached the filter to a class with a
condition, we need to activate the filter from our application on a session. The next class,
SimpleFilterExample, inserts several user records into the database and then immediately
displays them to screen. The class uses a very simple HQL query ("from User") to obtain the
result set from Hibernate. The displayUsers() method writes the usernames and activation
status out to the console. Before we enable any filters on the database, this method returns all
of the users. After we enable the first filter (activatedFilter) to only show activated users, we
call the same displayUsers() method, but now the results of the query are the same as if we
added a WHERE clause that contained an "activated=true" clause. We can just as easily change
the filter’s parameter to show nonactivated users, as seen in Listing 12-2.

CHAPTER 12

Listing 12-2. SimpleFilterExample.java Source Code Listing

package com.hibernatebook.filters;

import java.util.Iterator;

import org.hibernate.Filter;
import org.hibernate.Query;
import org.hibernate.Session;
import org.hibernate.Transaction;

public class SimpleFilterExample

{

public static void main (String args[])

{

}

Session session = HibernateHelper.getSession();

//insert the users
insertUser("ray",true,session);
insertUser("jason",true,session);
insertUser("beth",false,session);
insertUser("judy",false,session);
insertUser("rob",false,session);

//Show all users
System.out.println("===ALL USERS===");
displayUsers(session);

//Show activated users

Filter filter = session.enableFilter("activatedFilter");
filter.setParameter("activatedParam",new Boolean(true));
System.out.println("===ACTIVATED USERS===");
displayUsers(session);

//Show nonactivated users
filter.setParameter("activatedParam",new Boolean(false));
System.out.println("===NON-ACTIVATED USERS===");
displayUsers(session);

session.close();

public static void displayUsers(Session session)

{

Transaction trans = session.beginTransaction();
Query query = session.createQuery("from User");
Iterator results = query.iterate();

HIBERNATE FILTERS

207

208 CHAPTER 12 I/ HIBERNATE FILTERS

while (results.hasNext())

{
User user = (User) results.next();
System.out.print(user.getUsername() + " is ");
if (user.isActivated())
{
System.out.println("activated.");
}
else
{
System.out.println("not activated.");
}
}

trans.commit();

}
public static void insertUser(String name, boolean activated, Session session)
{
Transaction trans = session.beginTransaction();
User user = new User();
user.setUsername(name);
user.setActivated(activated);
session.save(user);
trans.commit();
}

The results from running SimpleFilterExample are

===ALL USERS===

ray is activated.
jason is activated.
beth is not activated.
judy is not activated.
rob is not activated.
===ACTIVATED USERS===
ray is activated.
jason is activated.
===NON-ACTIVATED USERS===
beth is not activated.
judy is not activated.
rob is not activated.

Listing 12-3 is the User class, which is a POJO. It only contains the id for the primary key,
the username, and a boolean variable called activated.

Listing 12-3. User.java Source Code Listing

package com.hibernatebook.filters;

public class User

{
private int id;
private String username;
private boolean activated;
public boolean isActivated()
{
return activated;
}
public void setActivated(boolean activated)
{
this.activated = activated;
}
public int getId()
{
return id;
}
public void setId(int id)
{
this.id = id;
}
public String getUsername()
{
return username;
}
public void setUsername(String username)
{
this.username = username;
}
}

HIBERNATE FILTERS

We are using the same HibernateHelper class we used in earlier chapters (see Listing 12-4).

Listing 12-4. HibernateHelper.java Source Code Listing

package com.hibernatebook.filters;
import org.hibernate.Session;
import org.hibernate.SessionFactory;

import org.hibernate.cfg.Configuration;

public class HibernateHelper {

209

210

CHAPTER 12 I/ HIBERNATE FILTERS

private HibernateHelper() {
}

public static Session getSession() {
Session session = (Session)HibernateHelper.session.get();
if(session == null) {
session = sessionFactory.openSession();
HibernateHelper.session.set(session);

}

return session;

}

private static final ThreadlLocal session = new ThreadlLocal();

private static final Threadlocal transaction = new Threadlocal();

private static final SessionFactory sessionFactory = new w
Configuration().configure().buildSessionFactory();

}

We used the HSQL database for the example. If you are using another database, this
example will work as expected, as it does not use any database-specific functionality beyond
the Hibernate configuration. The Hibernate configuration file defines the database configura-
tion and connection information, along with the XML mapping document for the User class
(see Listing 12-5).

Listing 12-5. Hibernate XML Configuration File for the Example

<?xml version='1.0' encoding="utf-8'?>
<IDOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
<session-factory>
<property name="hibernate.connection.driver class"> =
org.hsqldb.jdbcDriver</property>
<property name="hibernate.connection.url"> w»
jdbc:hsqldb:file:filterdb</property>
<property name="hibernate.username">user</property>
<property name="hibernate.password">user</property>
<property name="dialect">org.hibernate.dialect.HSQLDialect</property>

<!-- Mapping files -->
<mapping resource="com/hibernatebook/filters/User.hbm.xml"/>

</session-factory>

</hibernate-configuration>

CHAPTER 12 " HIBERNATE FILTERS

The source code for this chapter includes the schema we used for the HSQL database to
create the table for the filterdb database.

Summary

Filters are a very useful way to separate some database concerns from the rest of your code.
A set of filters can cut back on the complexity of the HQL queries in the rest of your applica-
tion, at the expense of some runtime flexibility. Instead of using views, which need to be set
up at the database level, your applications can take advantage of filters that may be activated
or deactivated for individual user sessions.

211

CHAPTER 13

Fitting Hibernate into the
Existing Environment

As we have discussed in earlier chapters, Hibernate represents a fundamentally different
approach to database integration from the traditional connected API. The vast body of exist-
ing code, therefore, is not written with Hibernate’s techniques in mind, and the typical
migration to Hibernate will need to support at least a subset of the legacy design.

In this chapter, we will discuss stored procedures, which are not supported by the HSQL
database that we used in earlier chapters. Therefore, we will make use of the Firebird database
(available from http://firebird.sourceforge.net/ and the JayBird JDBC driver can be
obtained from http://jaybirdwiki.firebirdsqgl.org/) to conduct the remaining examples.
As with HQL, Firebird was chosen because it is a freely available Open Source project. Hiber-
nate has support for stored procedures for a number of other commercial and free databases,
including Oracle, Microsoft SQL Server, Sybase Adaptive Server, and MySQL.

Limitations of Hibernate

First and foremost, Hibernate wants every entity to be identifiable with a primary key. Ideally,
it would like this to be a surrogate key (a single column distinct from the fields of the table).
Hibernate will accept a primary key that is not a surrogate key. For example, the username
column might be used to uniquely identify an entry in the user table. Hibernate will also
accept a composite key as its primary key, so that the username and hostname might be
used to form the primary key if the username alone did not serve to identify the row.

In the real world, things do not really work like that. Any database that has been around
the block a few times is likely to have at least one table for which the primary key has been
omitted. For instance, the contents of the table may not have needed to be involved in any
relations with other tables. While this is still bad database design, the error is only exposed
when Hibernate tries to map objects to data. It may be that adding a suitable surrogate key
column is an option—where this is the case, we urge you to do so. In practice, however, the
fundamental schema may not be under the developer’s control, or other applications may
break if the schema is radically changed.

In most scenarios, a developer will be able to arrange the creation of views, or stored pro-
cedures. It may be possible to create the appearance of a suitable primary key using these if
no other options present themselves, but you should consult with your database administra-
tors, since a table for which no true primary key can be obtained is likely to cause long-term
corruption of your data! 213

214

CHAPTER 13 ©" FITTING HIBERNATE INTO THE EXISTING ENVIRONMENT

Finally, if you cannot change a broken schema, and you cannot add views or stored pro-
cedures to ameliorate its effects, you have the option of obtaining a pure JDBC connection
(see Listing 13-1) from the session to the database and carrying out traditional connected
database access. This is the option of last resort and is only truly of value when you anticipate
being able to correct the faulty schema at some future time.

Listing 13-1. Obtaining a JDBC Connection from Hibernate

SessionFactory sessions =

new Configuration().configure().buildSessionFactory();
Session session = sessions.openSession();
Connection connection = session.getConnection();

If you dislike the mixture of Hibernate and connected code, you could also look at some
of the competing connectivity tools. For example, iBatis (downloadable from http://
www.ibatis.com/) offers an intermediate solution somewhere between the relaxed API of
JDBC and the strictures of Hibernate. You could also investigate the Spring framework’s sup-
port for JDBC, which offers excellent support for stored procedures, aggregate functions,
and many other features through a clear, yet terse, syntax. You can obtain Spring from
http://www.springframework.org/.

Hand-Rolled SQL

Although Hibernate cannot operate upon entities that lack primary keys, it is also awkward to
use when there is a poor correspondence between the tables and the classes of your object
model.

Using a Direct Mapping
Figure 13-1 presents a fairly typical example of a valid database model that may be painful to
represent in our mapping files.

product product_color color

PK |id |[€«————PKFKI |pid [———|PK |id

— PK, FK2 | color id
sku — name

id

Figure 13-1. A problematic, but legal, schema

Here the product table represents a product (for example, a flashlight). The color table
represents the colors in which it is sold. The link table named product_color then allows us to
identify a product, by Stock Keeping Unit (SKU), and identify the colors in which it is available.

CHAPTER 13 " FITTING HIBERNATE INTO THE EXISTING ENVIRONMENT

If we do not mind the Product object retaining a set of colors (representing the colors in
which it can be sold), then we have no problem; but if we want to distinguish between a red
flashlight and a green one, things become more difficult (see Listing 13-2).

Listing 13-2. A Fairly Direct Representation of the Product

<class name="com.hibernatebook.legacy.Product" table="product color">

<composite-id
class="com.hibernatebook.legacy.ProductKey"
name="key">

<key-property type="int" name="id" column="product id"/>
<key-property type="int" name="colorId" column="color id"/>

</composite-id>

<many-to-one
name="color"
class="com.hibernatebook.legacy.Color"
column="color_id"
insert="false"
update="false"/>

<many-to-one
name="data"
class="com.hibernatebook.legacy.ProductData"
column="product_id"
insert="false"
update="false"/>

</class>

There are several dissatisfying aspects to the mapping in Listing 13-2. First, rather than
map our product table, we have mapped the link table. This makes sense when you consider
that the primary key formed from the two columns of this table uniquely identifies a “colored
product” that the product table alone cannot do.

Second, we are obliged to create a number of distinct objects to represent the class—the
Product class itself, a class to represent the primary key (inevitable where a composite id
occurs), a class to represent the other attributes of the product, and the Color class.

Last, the use of the columns more than once within the mapping requires us to flag them
so that they cannot be written—this is a read-only mapping.

215

216 CHAPTER 13 ' FITTING HIBERNATE INTO THE EXISTING ENVIRONMENT

Using aView

Fortunately, most databases provide a simple mechanism for manipulating a schema so that
it better matches the business requirements. A database view will allow you to put together a
join that appears to be a table. By a suitable choice of columns from the existing tables, you
can construct a view that is much easier to map. Our example in Listing 13-3 is for Firebird;
your database may have a slightly different syntax.

Listing 13-3. A View on Our Product Tables

create view vwProduct (ProductKey,ColorKey,Id,SKU,ColorId)
AS
select
p.id as ProductKey,
c.id as ColorKey,
p.id as Id,
p.sku as SKU,
c.id as ColorId
from
product p,
product_color pc,
color ¢
where
p.id = pc.product_id
and
pc.color_id = c.id;

This view effectively reformats our table so that it has a correct (composite) primary key
formed from the link table’s two columns. It makes the SKU data available directly, and it
retains the foreign key into the color table.

Listing 13-4 is a much more natural mapping.

Listing 13-4. The Revised Mapping

<class name="com.hibernatebook.legacy.Product"” table="vwProduct">
<composite-id
class="com.hibernatebook.legacy.ProductKey"
name="key">
<key-property
type="int"
name="id"
column="ProductKey"/>
<key-property
type="int"
name="colorId"
column="ColorKey" />
</composite-id>

CHAPTER 13 " FITTING HIBERNATE INTO THE EXISTING ENVIRONMENT

<property
name="1id"
type="int"
column="id"
insert="false"
update="false"
unique="true"/>

<property
name="SKU"
type="int"

column="sku"
insert="false"/>

<many-to-one
name="color"
class="com.hibernatebook.legacy.Color"
column="ColorId"/>
</class>

The behavior of the composite primary key is unchanged, but the SKU now becomes a
simple property. The color entity is mapped as before.

The caveat for this approach is the problem of writing data to the mapping. Some data-
bases (for example versions 4 and lower of MySQL) do not support writable views, and others
may have only limited support for them. To avoid views in these circumstances, we must
abandon complete portability in favor of database-specific SQL inserted directly into the
mapping file.

Putting SQL into a Mapping

Hibernate 3 provides three tags that can be used to override the default behavior when writing
to the database. Instead of accepting the SQL generated by Hibernate from the information in
the mapping file, you can dictate exactly how changes to an entity should be enforced. The
disadvantage is that you will lose Hibernate’s guarantee of cross-database platform portability.
The advantage is that you can carry out operations that are not explicitly described in the
mapping, such as calculating and inserting values in the process of carrying out an insert.

The tags are <sql-insert>, <sql-update>, and <sql-delete>. All three work in the same way.

If you take a look at the Database Definition Language (DDL) script for this chapter, you
will see that our client table includes seven fields, last amongst which is the country field as
shown in Listing 13-5.

Listing 13-5. The DDL Script to Create Our Client Table

create table client (
id int not null primary key,
name varchar(32) not null,
number varchar(10),
streetname varchar(128),

217

218

CHAPTER 13 ' FITTING HIBERNATE INTO THE EXISTING ENVIRONMENT

town varchar(32),
city varchar(32),
country varchar(32)

)s

We will, however, ignore the country field in our mapping file. We would like this to be
automatically set to “UK” whenever a client entity is persisted.

Depending on the database, this could be implemented as part of the view’s support for
writing operations or as a trigger invoked when the other fields are written, but we use the
<sql-insert> tag to specify the operation to perform.

The necessary ordering of the parameters can be determined by running Hibernate with
logging enabled for the org.hibernate.persister.entity level. You must do this before you
add the mapping. Listing 13-6 shows a suitably formatted <sql-insert> element with the
parameters suitably ordered. Note that the identifier field id is in the last position, rather than
the first as you might have expected.

Listing 13-6. The Mapping File Using Explicit SQL to Update the Tables

<class name="com.hibernatebook.legacy.Client" table="Client">
<id type="int" name="id" column="id">
<generator class="native"/>
</id>
<property type="text" name="name" column="name"/>
<property type="text" name="number" column="number"/>
<property type="text" name="streetname" column="streetname"/>
<property type="text" name="town" column="town"/>
<property type="text" name="city" column="city"/>

<sgql-insert>
insert into client(name,number,streetname,town,city,id,country)
values (?,?,?,2,2,2,'UK");
</sql-insert>
</class>

In addition to the three SQL terms for writing to the database, you can specify hand-rolled
SQL for reading. This is appended as <sql-query> tags outside the class tag (see Listing 13-7).
They are not intrinsically a part of the mapping. However, you can specify that one of them
should be used as the default loader for your class.

Listing 13-7. An Alternative Mapping File Defining a Default Loader

<hibernate-mapping>
<class name="com.hibernatebook.legacy.Client"
table="Client">
<id type="int" name="id" column="id">
<generator class="native"/>

CHAPTER 13 " FITTING HIBERNATE INTO THE EXISTING ENVIRONMENT

</id>

<property name="name"/>
<property name="number"/>
<property name="streetname"/>
<property name="town"/>
<property name="city"/>

<loader query-ref="DefaultQuery"/>
</class>

<sql-query name="DefaultQuery">
<return alias="c"
class="com.hibernatebook.legacy.Client"/>
SELECT
id as {c.id},
"NOT SPECIFIED' as {c.name},
number as {c.number},
streetname as {c.streetname},
town as {c.town},

city as {c.city}

FROM
(lient
WHERE
id = ?

</sql-query>

</hibernate-mapping>

Tip Unfortunately, this technique is not quite as sophisticated as you might hope—the custom SQL will
not be invoked in general terms. Only if the id is explicitly supplied as with a call to Session.get() will the
default handling be overridden in favor of the loader query.

Invoking Stored Procedures

Data outlives application logic. This is a general rule of thumb and, as the authors can attest, it
holds true in practice. The natural lifespan of a database will tend to see multiple applications.
The lifespan of some of these applications will, in turn, tend to overlap, so that at any one time
we expect substantially different code bases to be accessing the same data.

219

220

CHAPTER 13 I FITTING HIBERNATE INTO THE EXISTING ENVIRONMENT

Tip Different code bases accessing the same data can cause a fundamental problem: one erroneous
application can corrupt the data being used by multiple applications. This is a distinct problem from the
issues that the ACID rules described in Chapter 9 can resolve. For example, an application that writes user-
names in mixed case may break an application that expects to see only uppercase!

To resolve such issues, databases usually provide their own programming language to
allow complex business rules to be expressed and enforced within the boundary of the data-
base itself. These languages are expressed in stored procedures—essentially an API to the
database. Often free-form SQL access to such a database is denied, and only stored procedure
access is permitted, as barring errors in the stored procedures themselves this removes the
risk of corruption.

One final advantage of using stored procedures is that where a substantial calculation is
required, the use of a stored procedure can reduce the network traffic involved. For example,
invoking a stored procedure to calculate the grand total of a table of accounts, only the
request and the result figure would need to traverse the network. The equivalent client-side
implementation would need to acquire the value to be totaled from every row!

Tip Unfortunately, there is no universal standard either for the language of stored procedures themselves
or the way that they interface to the outside world. Hibernate supports only the common subset of stored
procedures that permit both input and output parameters in the initial call, and that returns one (and only
one) result set when invoked. Hibernate also makes some assumptions about how a stored procedure will
behave when invoked. For example, a PostgreSQL function (its equivalent of stored procedures) will always
return a value void when called, which prevents these from being invoked for insertions where no return
value is expected.

Because stored procedures are such a fundamental part of the way real businesses manage their data,
we are optimistic that the Hibernate team will move to support additional types of invocation in the near
future—and, in fact, the JDBC specification makes no particular assumptions about the behavior of stored
procedures, so it should be possible for them to be supported by the dialect classes, or a similar mechanism,
for all databases that provide a stored procedure mechanism.

Taking the Client example from the “Putting SQL into a Mapping” section, we could
replace the SQL logic in the <sql-insert> tag with a call to a suitable stored procedure. The
callable attribute is set to true to indicate that Hibernate needs to issue a call to a stored pro-
cedure instead of a standard query (see Listing 13-8).

Listing 13-8. Mapping a Call to the Stored Procedure

<sql-insert callable="true">
{call insertClient(?,?,?,?,?2,?2)}
</sql-insert>

CHAPTER 13 " FITTING HIBERNATE INTO THE EXISTING ENVIRONMENT

In the stored procedure definition (see Listing 13-9), you will note that the order of the
parameters to be passed in has been tailored to match the order in which they will be pro-
vided by Hibernate.

Listing 13-9. The Logic of the Stored Procedure

SET TERM ~
CREATE PROCEDURE
insertClient(p_name varchar(32),
p_number varchar(10),
p_streetname varchar(128),
p_town varchar(32),
p_city varchar(32),
p_id int)
AS
BEGIN
INSERT INTO client
(id,name,number, streetname,town,city, country)
VALUES
(:p_id,:p_name, :p_number,:p_streetname,:p town,:p city, 'UK");
END?
SET TERM ; *

By obtaining a JDBC connection from the Session, it is of course possible to invoke stored
procedures directly; however, you must be aware that such updates cannot be tracked by the
Hibernate session cache.

Replacing JDBC Calls in Existing Code

When Hibernate is to be used to replace existing JDBC logic in a legacy application, we recom-
mend that you convert your application to use Data Access Objects (DAOs) as described in
brief in Chapter 3.

First, establish your goals—why are you converting a working application to Hibernate?

Second, your next step could be to implement new functionality in Hibernate, being care-
ful with caching to always be pessimistic about what is going on in the database. As an interim
step, make sure all of your existing JDBC code uses transactions properly.

After that, follow our directions in this chapter for ensuring that your database has all of
its primary keys, so we can start moving JDBC statements to Hibernate Native SQL. Native
SQL does perform object mapping. Also, start writing Hibernate mapping documents for your
classes and tables—refactoring your Java business objects as necessary. Use views as a transi-
tional tool. Try to avoid the urge to completely rewrite the working parts of the application at
this stage, unless you have got the time to do it right!

As you convert the application to native SQL in Hibernate, replace your JDBC statements
with calls to Hibernate named queries.

While every database conversion is different, we believe that you now have the tools you
need to understand any hurdles that you may encounter.

221

222

CHAPTER 13 ' FITTING HIBERNATE INTO THE EXISTING ENVIRONMENT

Summary

In this chapter, we have looked at the way in which Hibernate can integrate with your existing
application environment. We have shown some techniques that allow an extant database to
be accommodated and we have shown how a legacy application can be integrated with the
Hibernate API. In addition, we have considered some of the limitations and constraints that
Hibernate’s “do it right” philosophy imposes.

This is the penultimate chapter of the book and the last in which we introduce the
new features of Hibernate 3. In the final chapter, we will discuss the differences between
Hibernate 2 and 3. We will also discuss some of the features that Hibernate 3 offers to
support Hibernate 2 users.

CHAPTER 14

Upgrading from Hibernate 2

Hibernate 3 is a major change from the ways of doing things in Hibernate 2. On the whole it
is a better product, and we applaud the Hibernate developers for their efforts. One particular
group of users will be made nervous by all the changes, and that group is the existing users of
Hibernate 2.

Well, there is good news, and there is . . . no bad news! Hibernate 3 has gone the extra mile
to allow earlier users to get along. In this chapter, we will take the view from a height of the dif-
ferences between the two versions, and explain how a Hibernate 2 user can take advantage of
them without conducting a major code rewrite.

Hibernate 3 does make changes: The package names have changed; the DTDs have changed;
the required libraries are different; and method names and signatures have been altered. Even
so, we think you will find that these differences will not cause you much grief when upgrading
to the new version.

Once you have read this chapter, we also recommend that you consult the Hibernate 3
Migration Guide in the documentation section of the Hibernate website. The Hibernate team
maintains and updates this section to reflect the users’ experiences, so you can find hints and
tips gathered from users at the cutting edge of just this sort of upgrade.

Package and DTD Changes

The package names for Hibernate 2 and Hibernate 3 have been changed. Hibernate 2 used
a base package of net.sf.hibernate and Hibernate 3 uses a base package of org.hibernate.

This is, of itself, a completely trivial difference—you might imagine that it is purely the
result of a migration from Hibernate’s hosting moving from SourceForge (http://sf.net/ or
http://sourceforge.net/) to their own website (http://hibernate.org/), but, in fact, there is
another reason for the change.

Because of the package name change, it is possible for an application to use Hibernate 2
and Hibernate 3 simultaneously. If the same package name had been used, then it would be
nearly impossible to achieve this.

This is not a coincidence; in addition to the package name, there are now two versions of
the DTDs for the XML configuration files. Unchanged Hibernate 2 code should use the usual
mapping DTD reference of

http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd
And for your new Hibernate 3 code, you will use

http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd

223

224

CHAPTER 14 " UPGRADING FROM HIBERNATE 2

Similarly, for the Hibernate configuration file, your version 2 code will use
http://hibernate.sourceforge.net/hibernate-configuration-2.0.dtd
And version 3 code will use

http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd

Caution If you do not update your mapping configuration from the Hibernate 2 form to the Hibernate 3
form, the time it takes to create a configuration and session factory will rise from around 20 seconds to
a matter of minutes.

Obviously, it will not be possible for you to have two configuration files with the same
(default) name of hibernate.cfg.xml, but either version of Hibernate permits you to construct
a Configuration object and then specify an explicit location for the configuration file using the
configure() methods (as seen in Listing 14-1).

Listing 14-1. Using an Explicitly Named Configuration File in Hibernate 3

File configFile = new File("hibernate3.cfg.xml");

Configuration v3Config = new Configuration();

v3Config.configure(configFile);

SessionFactory sessionFactory =
v3Config.buildSessionFactory();

Session session = sessionFactory.openSession();
/...

In your Hibernate 3 logic, you should be aware that some of the defaults for entries in the
mapping file have changed. If you have logic that relies upon implicit settings, you should
review your converted mapping files against the version 3 DTD to check that they will behave
as expected. The most significant change is that all mappings now default to lazy loading.

Related to this, in Hibernate 2 your POJO classes were not required to provide a public- or
protected-access default constructor. Because Hibernate 3 provides lazy loading as the default
and because it instruments your POJOs to be their own proxies, you must provide a default (zero
argument) constructor with protected or public access. This issue does not manifest itself at
compile time, so you should apply this change methodically before trying to run the converted
application.

New Features and Support for Old Ones

If you are a Hibernate 2 developer and you have browsed through the earlier chapters, you will
have realized that Hibernate 3 offers a lot of new features. You will also have realized that the
Hibernate 2 features that you rely on may no longer be supported in version 3. For the most
part, though, this is not the case.

CHAPTER 14 " UPGRADING FROM HIBERNATE 2

Changes and Deprecated Features

If you plan to take advantage of the Hibernate 3 features in any of your existing code, you can,
as discussed, simply run the two versions side by side without concern. If you are prepared to
make some changes to your existing code, then it is better to take the opportunity to update
your existing code to use Hibernate 3 directly. In order to make this second choice a little easier,
Hibernate 3 provides a number of “deprecated” APIs that permit fewer changes than a full-blown
conversion.

This reduces the immediate impact of the change, and allows you to conduct the rest of the
conversion at your leisure, while still allowing you to remove the legacy Hibernate 2 libraries
from your application.

Tip Hibernate exceptions are now thrown as unchecked exceptions. This will not impact existing code,
but you may want to revisit APIs that explicitly declare the exception. This change is intended to increase the
clarity of API signatures by removing the need for the explicit throws clause in code, which uses Hibernate
but does not catch its exceptions. There are ongoing debates over the relative merits of the two approaches,
but certainly the change from checked fo unchecked will not introduce any incompatibilities (where the reverse
would not be true).

Some changes to HQL have occurred between versions 2 and 3. If you have a substantial
body of existing HQL syntax, you can elect to retain the old syntax. The selection is made with
the hibernate.query.factoryclass configuration attribute, which selects the class to load for
translating HQL into database queries. The options are listed in Table 14-1.

Table 14-1. The HQL Processing Classes

Query Factory Class HQL Version
org.hibernate.hqgl.ast.ASTQueryTranslatorFactory 3 (default)
org.hibernate.hql.classic.ClassicQueryTranslatorFactory 2

It is not possible to switch between the two query translators within a SessionFactory instance.
Because HQL queries are not parsed until runtime,! you will need to run extensive tests to ensure
that your modified queries are correct if you decide to convert to the Hibernate 3 syntax.

The object retrieved from the SessionFactory in Hibernate 3 implements both the pure
Hibernate 3 org.hibernate.Session interface and a Hibernate 2 friendly org.hibernate.classic.
Session interface. By using a classic Session reference instead of the standard, you will have
access to the methods that have now been deprecated. A fully converted Hibernate 3 applica-
tion will not need to invoke any of these methods, so you should use a reference to the standard
interface unless absolutely compelled by existing logic.

Other deprecated features also reside in the classic package and its subpackages. Notable
examples are listed in Table 14-2.

1. Named queries were introduced in Hibernate 3. These are stored in the mapping file and are parsed
on application initialization—so while they are still parsed at runtime, you will not need to run exten-
sive tests to spot problems with them.

225

226

CHAPTER 14 " UPGRADING FROM HIBERNATE 2

Table 14-2. Feature Replacements in Hibernate 3

Feature Location in Hibernate 3 Use in Preference
Lifecycle org.hibernate.classic Interceptor or Event
Validatable org.hibernate.classic Interceptor or Event

Some of the changes to Hibernate 3 have not justified the creation of a replacement class.
Here a few methods will have been removed, replaced, or renamed. In these few cases, if you
do not want to run Hibernate 2 and 3 side by side, you will be forced to update your code. When
compilation produces errors, consult the JavaDoc API at http://hibernate.org to see if the API
has changed and to determine the preferred technique. In practice, there are few changes in the
core API between versions 2 and 3, and such changes as do exist have well signposted successors
in the new APIL.

Additions

The Event class is new to Hibernate 3. If you are familiar with the Interceptor class (which is
retained), you will have some idea of what to expect. The topic is discussed in Chapter 11.

The criteria and filter APIs have been extended considerably. These are discussed in detail
in Chapters 7 and 12, respectively.

The flexibility of the mappings has been improved. For example, the join element permits
a single class to be represented by multiple tables. Support for stored procedures allows better
integration with legacy databases. The mapping file format is discussed in Chapter 6 and sup-
port for stored procedures and other legacy features are discussed in Chapter 13.

Changes to Tools and Libraries

As you may expect, the libraries upon which Hibernate is based have changed in version 3.
Some have been added, others have been brought up to date. Rather than enumerate these
here, we refer you to the 1ib/README. txt file in your Hibernate 3 distribution, which explains
in detail whether or not individual libraries are required, and what purpose each serves.

Hibernate 2 provided a number of aids to the generation of POJOs, mapping files, and
database schema. Hibernate 3 has started a process of migrating to external support for these
processes. Where these tools are retained, they can be found in the org.hibernate.tool pack-
age and its subpackages. For example, the fully qualified name of the SchemaExport class is
now org.hibernate.tool.hbm2ddl.SchemaExport, but the generation of mapping files from POJOs
(previously a facility provided by the CodeGenerator class, which is not provided with Hibernate 3)
would usually be conducted with an Eclipse plug-in, XDoclet, or be replaced by Java 5 annota-
tions.

The Eclipse IDE has grown phenomenally in popularity during the development of
Hibernate 3. As a result of this, Hibernate 3 now provides the Hibernate tools project to supply
Eclipse plug-ins. This project (http://tools.hibernate.org/) is in alpha release at the time of
this writing, but we have encountered few problems using it during the writing of this book. It
provides aid in generating and reverse-engineering the POJO, mapping, and schema components.
It also provides an interactive HQL console, which is an invaluable debugging tool. If you pro-
pose to use Eclipse while developing Hibernate, we would recommend that you install these
plug-ins.

CHAPTER 14 " UPGRADING FROM HIBERNATE 2

Changes with Java 5

The latest release of Java introduced some pretty substantial changes to the language. It also
introduced some incompatibilities with the previous class file format.

The core Hibernate library and its dependencies are still being compiled under the 1.2
series of Java so this should present you with no problems. The only significant addition to
Hibernate 3 that relies upon a Java 5 specific feature is the Annotations library, which at the
time of this writing is still in beta. If you are using Java 5, check the Annotations page (http://
annotations.hibernate.org/) for the latest status of this library.

The use of annotations in Hibernate 3 is discussed in more depth in Chapter 4.

Summary

In this chapter, we examined some of the changes that have been introduced with Hibernate 3
and seen how code written for Hibernate 2 can be run parallel to Hibernate 3, or be readily
adapted to run directly under Hibernate 3.

227

Index

Symbols
--config flag
SchemaExport task, 32
@AssociationTable annotation
attributes, 75
modelling relationships, 75
@Basic annotation
field persistence, 71
@Column annotation
attributes, 71
object-relational mapping, 71
@Entity annotation
access value, 69
adding to class, 68-69
@1d annotation
attribute values, 69
@Inheritance annotation, 75
attributes, 75
@InheritanceJoinColumn
attributes, 75
@InheritanceJoinColumn annotation, 76
@JoinColumn annotation
attributes, 72
many-to-one associations, 72
@ManyToMany annotation
modelling many-to-many relationships,
74-75
@ManyToOne annotation
attributes, 72
modelling relationships, 72
@OneToMany annotation
attributes, 73
modelling one-to-many relationships,
73-74
@0OneToOne annotation
modelling one-to-one relationships, 75
@SecondaryTable annotation
database table mapping, 70
join attribute, 70
@Table annotation
database table mapping, 70
@Transient annotation
field persistence, 71

A

abstract attribute
<class> element, 97
access attribute
collection elements, 108
<component> element, 103
<id> element, 100
<many-to-many> element, 106
<one-to-one> element, 104
<property> element, 102
access value
@Entity annotation, 69
add() method
Criteria interface, 135
ProjectionList class, 142
addCacheableFile() method
Configuration class, 21
addClass() method
Configuration class, 21
addDirectory() method
Configuration class, 21
addDocument() method
Configuration class, 21
addEntity() method
SQLQuery interface, 157
addFile() method
Configuration class, 21
addJar() method
Configuration class, 21
addJoin() method
SQLQuery interface, 157
addOrder() method
Criteria interface, 139-140
addScalar() method
SQLQuery interface, 157
addURL() method
Configuration class, 21
addXML() method
Configuration class, 21
AdException class
building, 53
AdvertDAO class
building, 58-59

229

230

INDEX

afterTransactionBegin() method
Interceptor interface, 190, 195
afterTransactionCompletion() method
Interceptor interface, 191, 195
aggregate functions, 153-154
Projections class, 141
aggregation mapping to composition
relationship, 118-119
aliases, 148
AND restriction, 137
with more than two different criteria, 137
AnnotationConfiguration class
org.hibernate.cfg package, 67, 76
annotations, 65
annotating class as EJB3 Entity Bean,
68-69
code listings, 77-81
creating mappings, 65-66
database table mapping with @Table and
@SecondaryTable, 70
field persistence with @Basic and
@Transient, 71
Hibernate 3 annotations toolset, 67
inheritance, 75-76
introduction, 67
modelling relationships, 72-75
object-relational mapping details with
@Column, 71
primary keys with @Id, 69-70
using annotated classes in Hibernate
configuration, 76-77
using in your application, 67
Annotations library, 227
Annotations tool, 183
Ant build script
message of the day example, 36-37
Ant build tool
installing, 29-31
<array> tag, 128
as keyword, 148
asc() method
Order class, 139
associations, 153
with criteria query API, 140
ASTQueryTranslatorFactory class
org.hibernate.hql.ast package, 225
atomicity (transactions), 162
auto-flush listener
AutoFlushEventListene interface, 197
auto-import attribute
<hibernate-mapping> element, 95
AutoFlushEventListener interface
auto-flush listener, 197, 199
avg() aggregate function, 154
Projection class, 141

B

backwards compatibility, Hibernate 2, 24
<bag> element

introduction, 112-113
Base DAO class

building, 52
batch-size attribute

<class> element, 97

collection elements, 108

<one-to-one> element, 104
Bean-Managed Persistence. See BMP
beforeTransactionCompletion() method

Interceptor interface, 191
beginTransaction() method

Session interface, 160
BMP (Bean-Managed Persistence), 7
Booking POJO example, 191-197
bootstrapping configuration, 10
buildSessionFactory() method

Configuration class, 16
bulk updates with HQL, 154-155

C
CacheMode class
options, 172
CacheProvider interface
org.hibernate.cache package, 172
caching
CacheMode options, 172
introduction, 170
level 2 cache implementations supported
by Hibernate, 172
sessions relationship to caches, 172
cardinality, 97
cascade attribute
@ManyToOne annotation, 72
@OneToMany annotation, 73
collection elements, 90, 108
<many-to-many> element, 106
<one-to-one> element, 104
CascadeType enumeration
javax.persistence package, 72
values, 72
cascading operations
different types, 91-92
cases, 149
catalog attribute
@Table and @SecondaryTable
annotations, 70
<class> element, 97
collection elements, 108
<hibernate-mapping> element, 95
<one-to-one> element, 104
CategoryDAO class
building, 56, 58

check attribute
<class> element, 97
collection elements, 108
<one-to-one> element, 104
class attribute
<component> element, 103
<generator> element, 100
<many-to-many> element, 106
<class> element, 93, 97, 115
and DTDs, 97
attributes, 97-99
classes defined by require <id> or
<composite-id> element, 100
order and cardinality of child elements, 99
classes, mapping to table, 114
ClassicQueryTranslatorFactory class
org.hibernate.hql.classic package, 225
ClassPersister class, 105
clear() method
Session interface, 160, 171
close() method
Session interface, 160
SessionFactory interface, 24
CMP (Container-Managed Persistence), 7
problems with, 7
CodeGenerator class
not provided with Hibernate 3, 226
CodeGenerator tool
not provided in Hibernate 3, 183
Collection class, 109
collection elements, 107
attributes common to collection
elements, 108
collection expressions, 149
column attribute
<id> element, 100
<many-to-many> element, 106
<property> element, 102
<column> element, 103
columnDefinition attribute
@InheritanceJoinColumn annotation, 75
@JoinColumn annotation, 72
Comparator class, 109
comparison operators, 149
<component> element, 103-104, 118
attributes, 103
child elements, 104
components, introduction, 93
<composite-id> element, 101
CompositeUserType interface
org.hibernate.foo package, 95
concatenation operators, 149
condition attribute
<filter> element, 204

INDEX

Configuration class, 14
buildSessionFactory() method, 16
creating SessionFactory class, 49
looking in classpath for mapping file, 32
mapping documents to, 21
setNamingStrategy() method, 23

configuring Hibernate, 16
naming strategy, 22-23
properties, 16-20
using container-managed data source, 23
XML configuration, 20, 22

conjunction() method
Restrictions class, 137

ConnectionPool class compared to

SessionFactory class, 159

consistency (transactions), 162

Container-Managed Persistence. See CMP

contains() method
Session interface, 160

count() aggregate function, 154
Projection class, 141

countDistinct() aggregate function
Projection class, 141

create listener
CreateEventListener interface, 197

create() method
Example class, 143

createCriteria() method
Criteria interface, 140
Session interface, 131

CreateEventListener interface
create listener, 197

createFilter() method
Session interface, 160

createQuery() method
Session interface, 146, 160

Criteria interface, 131
add() method, 135
addOrder() method, 139-140
createCriteria() method, 140
org.hibernate package, 146
setFirstResult() method, 138, 151
setMaxResults() method, 138-139, 151
setProjection() method, 141-142
uniqueResult() method, 139

criteria query API
associations, 140
distinct results, 141
introduction, 131
obtaining a unique result, 139
paging through result set, 138-139
Product class, 132
projections and aggregates, 141-143
Software class, 134

231

232

INDEX

sorting query's results, 139

Supplier class, 131

using restrictions, 135-138
Criterion interface

implemented by Example class, 143

org.hibernate.criterion package, 135
cross join, 153

D
DAOs (Data Access Objects)
building, 52-59
converting application to use, 221
designing for persistence layer example,
180-182
database design
JDBC connection, 214
omitting of primary key, 213
putting SQL into mapping, 217-219
using views for mapping, 216-217
database generation, 10
database independence, 26
database persistence, 3
database schema
creating for persistence layer example,
184-185
database table mapping
@Table and @SecondaryTable
annotations, 70
Date and Time SQL-92 functional operators
using in where clause, 149
deadlocks
generating a deadlock, 165-170
introduction, 164
deadly embrace. See deadlocks
default-access attribute
<hibernate-mapping> element, 95
default-cascade attribute
<hibernate-mapping> element, 91, 96
default-lazy attribute
<hibernate-mapping> element, 96
delete from clause, 155
delete listener
DeleteEventListener interface, 197
delete query
using instead of delete(String hql)
method, 90
delete() method
Session interface, 90, 160
delete-orphan cascade type, 91
DeleteEventListener interface
delete listener, 197
deletes with HQL, 154-155
deploying Hibernate, 14
EJB3 and, 15
JMX and, 15
required libraries for running Hibernate
3,14

desc() method
Order class, 139
detached objects, 85
dialect property
XML configuration, 20
direct mapping example, 214-215
dirty read, 162
dirty-check listener
DirtyCheckEventListener interface, 197
DirtyCheckEventListener interface
dirty-check listener, 197
disableFilter() method
Session interface, 205
disconnect() method
Session interface, 160
discriminator-value attribute
<class> element, 98
Disjunction class
org.hibernate.criterion package, 137
disjunction() method
Restrictions class, 137
DistinctRootEntityResultTransformer class
org.hibernate.transform package, 141
DTDs (Document Type Definitions), 9
changes from Hibernate 2 to 3, 223
order and cardinality, 97
durability (transactions), 162
<dynamic-component> element, 128
dynamic-insert attribute
<class> element, 98
dynamic-map entity mode
SessionFactory class, 93
dynamic-update attribute
<class> element, 98

E
Eclipse IDE
increase in popularity, 226
EJB3
new standard and POJOs, 4
relationship with Hibernate 3, 12
EJB3/JSR 220 persistence API, 92
EJBs
as persistence solution, 7
standardization of database
applications, 3
embedding HQL statements, 146
enableFilter() method
Session interface, 205
Enterprise Java Development on a Budget
Christopher M. Judd and Brian
Sam-Bodden, 29
Enterprise JavaBeans. See EJBs
entities, introduction, 93
Entity Bean classes, persitence of, 3
entity names, retrieving from Hibernate, 88

entity-name attribute
<class> element, 98
<many-to-many> element, 106
EntityManager component
Hibernate can be used as implementation
of, 12
EntityManager interface
javax.persistence package, 92
eq() method
Restrictions class, 135
equality operators, 149
Event class (new to Hibernate 3), 226
event listener example, 199-200
implementation, 200-201
events
event listener example, 199-200
introduction, 197-198
evict listener
EvictEventListener interface, 197
evict() method
Session interface, 160, 171
EvictEventListener interface
evict listener, 197
Example class
create() method, 143
org.hibernate.criterion package, 143
QBE functionality, 143
executeUpdate() method
Query interface, 154-155
Expression class
net.sf.hibernate.expression package, 135
sql() method, 135
expressions, 149

F
fetch attribute
@ManyToOne annotation, 72
@OneToMany annotation, 73
collection elements, 108
<many-to-many> element, 106
<one-to-one> element, 104
FetchType enumeration
javax.persistence package, 71
field persistence
@Basic and @Transient annotations, 71
<filter> element
attributes, 204
Filter interface
methods, 205
filter() methods
Session interface, 203
<filter-def> element, 206, 208-211
defining filters, 204
<filter-param> element
defining filters, 204

INDEX

filters, 203
basic example, 205-206
defining, 204-205
using in applications, 205
where to use, 203-204
findDirty interceptor method, 190
Firebird database, availability, 213
flush listener
FlushEventListener interface, 198
flush() method
Session interface, 89, 160-161
flush-entity listener
FlushEntityEventListener interface, 198
FlushEntityEventListener interface
flush-entity listener, 198
FlushEventListener interface
flush listener, 198
foreign-key attribute
<many-to-many> element, 106
formula attribute
<many-to-many> element, 106
<property> element, 102
from clause, 146, 148
full outer join, 153

G

ge() method
Restrictions class, 137
generate attribute value
@Id annotation, 69
generator attribute value
@Id annotation, 69
<generator> element, 100, 115
class attribute, 100
GeneratorType enumeration
javax.persistence package, 70
primary key generators, 70
get() method
Session interface, 49, 160, 219
getEnabledFilter() method
Session interface, 205
getEntity() method
Interceptor interface, 190
getEntityName() interceptor method
Interceptor interface, 190
getEntityName() method
Session interface, 88
getldentifier() method
Session interface, 100, 160
getName() method
Filter interface, 205
global intercepter, installing, 192-193
groupProperty() method
Projections class, 142
gt() method
Restrictions class, 137

233

INDEX

H
Hello World example, 8-9
Hibernate
as persistence solution, 7-8
automated creation of files, 10
common circumstances for
development, 65
configuring, 16
mapping documents, 21-22
naming strategy, 22-23
properties, 16-20
using container-managed data
source, 23
XML configuration, 20
database generation, 10
database independence, 26
deploying, 14-15
direct mapping, 214-215
fitting into existing environment, 213
Hello World example, 8-9
integrating and configuring, 13
integrating with Java applications, 13
invoking stored procedures, 219-221
level 2 cache implementations supported,
172
limitations of, 213-214
mappings and, 9-10
mutual creation of files, 11
origins, 5-7
EJBs as persistence solution, 7
POJOs and, 8
putting SQL into mapping, 217-219
relation bteween tables and classes, 214
replacing JDBC calls in existing code, 221
session factory interface, 24
SessionFactory inteface, 23
SQL dialects, 24-25
upgrading from version 2, 223
additions in version 3, 226
changes and deprecated features,
224-225
changes to tools and libraries, 226
changes with Java 5, 227
using views for mapping, 216-217
ways to retrieve data, 131
Hibernate 2
filters, 203
interceptors, 189
Hibernate 3
annotations toolset, 67
Eclipse plug-ins, 226
filters, 203
introduction, 3-4
mappings
different styles for creating, 66

persistence layer design considerations,
175
application requirements, 175
creating database schema, 184-185
designing DAOs, 180-181
designing object model, 176
Java application, 186
mapping, 182-183
relationship with EJB 3, 12
required libraries for running, 14
standard value names, 94
Hibernate class
org.hibernate package, 157
Hibernate Query Language. See HQL
hibernate-configuration XML file
importing configuration from, 31
<hibernate-mapping> element, 95, 115
attributes, 95
default-cascade attribute, 91
order and cardinality of child elements, 96
hibernate-mapping files, importing, 31
hibernate.cfg.xml file, 76
configuring Hibernate, 16
<mapping> element, 22
XML configuration, 20
hibernate.connection.datasource
property, 23
hibernate.connection.password property, 23
hibernate.connection.username property, 23
hibernate.dialect property, 25
hibernate.jndi.class property, 23
hibernate.jndi.url property, 23
hibernate.properties file
configuring Hibernate, 16
hibernate.show_sql property
viewing SQL in HQL queries, 147
hibernate.transaction.factory property, 186
hibernate3.jar
org.hibernate classes, 14
HibernateException class, 139
HibernateService class, 15
HibernateServiceMBean interface
getter and setter methods, 15
HibernateTemplate class, 14
HQL (Hibernate Query Language), 145
aggregate methods, 153-154
associations, 153
bulk updates and deletes, 154-155
commenting generated SQL, 148
first example, 146-148
from clause and aliases, 148
introduction, 145
logging underlying SQL, 147
named parameters, 150
named queries, 155-156
obtaining a unique result, 152

paging through result set, 151
restrictions, 149-150
select clause and projection, 149
sorting results with order by clause, 152
HQL named parameters
using in where clause, 149
HSQL database
installing, 28-29

I
iBatis tool, 214
<id> element, 100, 115
attributes, 100
child elements, 101
generator element needs to be specified,
100
<idbag> collection element
introduction, 110-111
IdentifierGenerator interface
default implementations, 100
ilike() method
Restrictions class, 136
index attribute
<many-to-many> element, 106
<property> element, 102
inheritance
mapping relationships, 123-127
using annotations, 75-76
InitialContextFactory interface, 23
InitializeCollectionEventListener interface
load-collection listener, 198
inner join, 153
insert attribute
<component> element, 103
<many-to-many> element, 107
<property> element, 102
insertable attribute
@JoinColumn annotation, 72
instantiate() method
Interceptor interface, 190
Interceptor interface, 191, 192, 195
methods, 190
interceptors have to override, 192
interceptors, 189
Booking POJO example, 191-197
changing data from within, 196
implementation, 193-195
methods for Hibernate 2 and 3, 189
inverse attribute
<bag> element, 113
<list> collection element, 110
<map> collection element, 112
<one-to-one> element, 104
<set> collection element, 109
inverseJoinColumns attribute
@AssociationTable annotation, 75

INDEX

isConnected() method
Session interface, 160
isDirty() method
Session interface, 89, 160
isNotNull() method
Restrictions class, 136
isNull() method
Restrictions class, 136
isolation (transactions), 162
isOpen() method
Session interface, 160
isTransient() method, 190
Interceptor interface, 190
isUnsaved() method, 190
Interceptor interface, 190

J
J2EE standardization of database
applications, 3
J2SE 5.0 platform
annotations supported, 66
Java 2 Enterprise Edition. See J2EE, 3
Java 5, changes to language, 227
Java Management Extensions. See JMX
Java object model
building for existing database schema, 65
javax.persistence package, 69
CascadeType enumeration, 72
EntityManager interface, 92
FetchType enumeration, 71
GeneratorType enumeration, 70
InheritanceType enumeration, 75
JoinColumn class, 71
JayBird JDBC driver, availability, 213
JBoss, managing Hibernate, 15
JDBC 2,deploying Hibernate, 14
JDBC AP], connected approach of direct
access via, 3
JDBC
calls replacing in existing code, 221
connection, 214
isolation levels, 162
query parameters using in where clause,
149
JMX, MBeans provided for, 15
JNDI, InitialContextFactory interface, 23
join attribute
@SecondaryTable annotation, 70
join clause, adding associations, 153
join mapping, 128
JoinColumn class
javax.persistence package, 71
joinColumns attribute
@AssociationTable annotation, 75
JTATransactionFactory class, 186

235

236

INDEX

Judd, Christopher M. and Sam-Bodden,
Brian
Enterprise Java Development on a Budget,
29

L

lazy attribute
<class> element, 98
collection elements, 108
<component> element, 103
<many-to-many> element, 107
<one-to-one> element, 104
<property> element, 102
lazy loading
POJOs and changes from Hibernate 2 to 3,
224
le() method
Restrictions class, 137
left outer join, 153
length attribute
@Column annotation, 71
<id> element, 100
<property> element, 102
Lifecycle interface, 85
like() method
Restrictions class, 136
<list> collection element
introduction, 110
listener names
and corresponding interfaces, 197-198
listeners field
as instance of SessionEventListenerConfig
class, 197
load listener
LoadEventListener interface, 198
load() method
Session interface, 87-88, 160
load-collection listener
InitializeCollectionEventListener
interface, 198
LoadEventListener interface
load listener, 198
loading objects
lock mode, 87
lock listener
LockEventListener interface, 198
lock modes, 164
loading objects, 87
lock() method
Session interface, 160
LockEventListener interface
lock listener, 198
locking, 163
LockMode class, 164
logic operators, 149

logical expressions
combining AND and OR restrictions, 137
orExp logical expression, 137

1t() method
Restrictions class, 137

<many-to-many> element, 106-107
attributes, 106-107
<many-to-many> relationships, 38
creating tables, 49
modelling with annotations, 74-75
<many-to-one> relationships
creating tables, 49
modelling with annotations, 72
<map> collection element
introduction, 111-112
mappedBy attribute
@OneToMany annotation, 73
mapping, 93
<any> tag, 128
<array> tag, 128
collections, 121-123
common circumstances for
development, 65
composition, 115-118
creating with annotations, 65-66
different styles for creating, 66
direct mapping, 215
<dynamic-component> element, 128
Hibernate and POJOs, 9-10
inheritance relationships, 123
one table per class hierarchy, 126-127
one table per concrete class, 124
one table per subclass, 125-126
join mapping, 128
mapping of Advert class into database, 46
mapping of Category class into
database, 46
mapping of Phone class into database,
45-46
mapping of User class into database,
44-45
other associations, 118-121
persistence layer example, 182-183
putting SQL into mapping, 217-219
simple classes, 113-115
using views, 216-217
mapping documents, 21
methods for mapping directly to
Configuration object, 21
<mapping> element
hibernate.cfg.xml file, 22
mapping files
<bag> element, 112-113
<class> element, 97-99

collection elements, 107
<component> element, 97, 103-104
<hibernate-mapping> element, 95-97
<id> element, 100-101
<idbag> collection element, 110-111
introduction, 95
<list> collection element, 110
<many-to-many> element, 106-107
<map collection> element, 111-112
<one-to-one> element, 104-106
<property> element, 102-103
<set> collection element, 109
MatchMode class
org.hibernate.criterion package, 136
math operators, 149
max() aggregate function
Projection class, 141
max() function, 154
MBeans, provided for JMX, 15
merge listener
MergeEventListener interface, 197
MergeEventListener interface
merge listener, 197
Message of the day example, 4
message of the day example
Ant build script, 36-37
building database, 37-38
configuration file, 31
Exception class, 34
main part of application, 34-36
POJO class, 33
MiddleGen tool
as alternative to CodeGenerator tool, 183
min() aggregate function
Projection class, 141
min() function, 154
mutable attribute
<class> element, 98

name attribute
@Column annotation, 71
@InheritanceJoinColumn, 75
@Table and @SecondaryTable
annotations, 70
<class> element, 98
collection elements, 108
<component> element, 103
<filter> element, 204
<id> element, 100
<many-to-many> element, 107
<one-to-one> element, 104
<property> element, 102
named parameters
using in HQL, 150
named queries
HQL and SQL, 155-156

INDEX

naming strategy functionality, 22-23
ne() method
Restrictions class, 136
net.sf.hibernate package, 223
net.sf.hibernate.expression package
Expression class, 135
new operator, 85
nonrepeatable read, 162
NonUniqueResultException exception, 139
thrown by Query interface, uniqueResult()
method, 152
not-found attribute
<many-to-many> element, 107
not-null attribute
<many-to-many> element, 107
<property> element, 102
nullable attribute
@Column annotation, 72
@JoinColumn annotation, 72

0

object mappings

See also mappings

creating, 44-47
Object Relational Mapping. See ORM
object-oriented model

mismatch with relational model, 3
objects

deleting, 90-91

equality and identity, 87

loading, 87-88

querying, 92

refreshing, 89

saving, 86

updating, 89-90
onDelete interceptor method, 191
one-to-many relationships

modelling with annotations, 73-74
<one-to-one> element, 104-106

attributes, 104-105
one-to-one relationships

modelling with annotations, 75
onFlushDirty interceptor method, 191
online billboard classes example, 38

class representing advert, 43

class representing categories, 42

class representing phone numbers, 40

class representing users, 39
onLoad() method

Interceptor interface, 190
onSave() method

Interceptor interface, 190, 195
openSession() method

Session interface, 160

SessionFactory interface, 24, 160
optimistic locking, 163

237

238

INDEX

optimistic-lock attribute

<class> element, 98

collection elements, 108

<component> element, 103

<many-to-many> element, 107

<one-to-one> element, 104

<property> element, 102
optional attribute

@ManyToOne annotation, 72
OR restriction, 137

with more than two different criteria, 137
or() method

Restrictions class, 137
order by clause

sorting results, 152
Order class

asc() method, 139

desc() method, 139

org.hibernate.criterion package, 139
order-by attribute

<bag> element, 113

<idbag> collection element, 111

<map> collection element, 112

<set> collection element, 109
orExp logical expression, 137
org.hibernate classes, 14
org.hibernate package, 223

Criteria interface, 146

Hibernate class, 157

Interceptor interface, 192

Query interface, 146

Session interface, 16, 225

SQLQuery interface, 157
org.hibernate.cache package

CacheProvider interface, 172
org.hibernate.cfg package

AnnotationConfiguration class, 67, 76

Configuration class, 16

SettingsFactory class, 16
org.hibernate.classic package

Session interface, 24, 225
org.hibernate.criterion package

Criterion interface, 135

Disjunction class, 137

Example class, 143

MatchMode class, 136

Order class, 139

Projection class, 141

ProjectionList class, 142

Restrictions class, 135
org.hibernate.dialect package

SQL dialects, 25
org.hibernate.event package

SaveOrUpdateEvent class, 86
org.hibernate.foo package

CompositeUserType interface, 95

UserType interface, 95

org.hibernate.hqgl.ast package
ASTQueryTranslatorFactory class, 225
org.hibernate.hql.classic package
ClassicQueryTranslatorFactory class, 225
org.hibernate.jmx package
HibernateServiceMBean interface, 15
StatisticsServiceMBean interface, 15
org.hibernate.persister.entity package, 218
org.hibernate.tool package, 226
org.hibernate.tool.hbm2ddl package
SchemakExport class, 226
org.hibernate.transform package
DistinctRootEntityResultTransformer
class, 141
ORM (Object Relational Mapping), 3
EJB 3 and, 12
origins, 5-7
EJBs as persistence solution, 7
Hibernate as persistence solution, 7-8
outer-join attribute
collection elements, 108
<many-to-many> element, 107
<one-to-one> element, 105

P

package attribute
<hibernate-mapping> element, 96
package names
changes from Hibernate 2 to 3, 223
<param> element, 100
persist() method
Session interface, 160
persistence
Hibernate as solution, 7-8
persistence lifecycle, 85
POJOs and, 4-5
persistence classes
creating, 39-44
persistence layer design considerations, 175
application requirements, 175
creating database schema, 184-185
designing DAOs, 180-181
designing object model, 176
designing POJOs, 176-180
Java application, 186
mapping, 182-183
persistence lifecycle
cascading operations, 91-92
deleting objects, 90-91
EJB3/JSR 220 persistence API, 92
introduction, 85
loading objects, 87-88
object equality and identity, 86
querying objects, 92
refreshing objects, 89
saving objects, 86
updating objects, 89-90

persistent objects, 85
persister attribute
<class> element, 98
collection elements, 108
<one-to-one> element, 105
persisting multiple objects, 38
pessimistic locking, 163
phantom read, 162
PhoneDAO class
building, 55
POJOs (Plain Old Java Objects)
as entities, 93
designing for persistence layer example,
176-180
Hibernate and, 8
introduction, 4-5
lazy loading and changes from Hibenate 2
to 3, 224
mapping and Hibernate, 9
Message of the day example, 4
persistence lifecycle, 85
polymorphism attribute
<class> element, 98
post-delete listener
PostDeleteEventListener interface, 198
post-insert listener
PostInsertEventListener interface, 198
post-load listener
PostLoadEventListener interface, 198
post-update listener
PostUpdateEventListener interface, 198
PostDeleteEventListener interface
post-delete listener, 198
postFlush interceptor method, 191
PostgreSQL function, 220
PostInsertEventListener interface
post-insert listener, 198
PostLoadEventListener interface
post-load listener, 198
PostUpdateEventListener interface
post-update listener, 198
pre-delete listener
PreDeleteEventListener interface, 198
pre-insert listener
PrelnsertEventListener interface, 198
pre-load listener
PreLoadEventListener interface, 198
pre-update listener
PreUpdateEventListener interface, 198
precision attribute
<property> element, 102
PreDeleteEventListener interface
pre-delete listener, 198
preFlush interceptor method, 191
PrelnsertEventListener interface
pre-insert listener, 198

INDEX

PreLoadEventListener interface
pre-load listener, 198
PreparedStatement class
compared to Query class, 49
PreUpdateEventListener interface
pre-update listener, 198
primary keys
and surrogate keys, 213
primaryKey attribute
@Column annotation, 71
@JoinColumn annotation, 72
principle of least intrusiveness, 13
Product class, 132
Projection class
org.hibernate.criterion package, 141
projectionList() method, 142
projection queries, 149
ProjectionList class
add() method, 142
org.hibernate.criterion package, 142
projectionList() method
Projection class, 142
projections, 141
Projections class
aggregate functions, 141
groupProperty() method, 142
property() method, 142
<property> element, 102, 115, 118
attributes, 102
child elements, 103
property() method
Projections class, 142
property-ref attribute
<many-to-many> element, 107
proxy attribute
<class> element, 98

Q

QBE (Query By Example), 143
example, 143-144

Query By Example. See QBE

Query class, creating, 49

Query interface
executeUpdate() method, 154-155
org.hibernate package, 146
setEntity() method, 151
setFirstResult() method, 151
setMaxResults() method, 151-152
uniqueResult() method, 152

R

Read Uncommitted isolation level
optimistic locks, 163
reconnect() method
Session interface, 160

239

240

INDEX

referencedColumnName attribute
@InheritanceJoinColumn, 75
@JoinColumn annotation, 72
refresh listener
RefreshEventListener interface, 198
refresh() method
Session interface, 160
RefreshEventListener interface
refresh listener, 198
relational model
mismatch with object-oriented model, 3
replicate listener
ReplicateEventListener interface, 198
ReplicateEventListener interface
replicate listener, 198
restrictions, using with criteria query API,
135-138
Restrictions class
conjunction() method, 137
disjunction() method, 137
eq() method, 135
ge() method, 137
gt() method, 137
ilike() method, 136
isNotNull() method, 136
isNull() method, 136
le() method, 137
like() method, 136
It() method, 137
ne() method, 136
or() method, 137
org.hibernate.criterion package, 135
sqlRestriction() method, 135, 138
right outer join, 153
rowed attribute
<class> element, 98

S
Sam-Bodden, Brian and Judd, Christopher
M

Enterprise Java Development on a Budget,

29
save() method(s)
Session interface, 86, 160, 200
save-update listener

SaveOrUpdateEventListener interface, 198

saveOrUpdate() method
Session interface, 86, 160, 200
SaveOrUpdateEvent class
org.hibernate.event package, 86
SaveOrUpdateEventListener interface
implementing, 200
save-update listener, 198
scale attribute
<property> element, 102

schema attribute
@Table and @SecondaryTable
annotations, 70
<class> element, 99
collection elements, 108
<hibernate-mapping> element, 96
<one-to-one> element, 105
SchemaExport class
org.hibernate.tool.hbm2ddl package, 226
SchemaExport task
--config flag, 32
Hibernate 3, 31
SchemaExport tool, 10, 184
secondaryTable attribute
@JoinColumn annotation, 72
select clause, 148
obtaining properties of objects in result
set, 149
select-before-update attribute
<class> element, 99
serializable isolation level
pessimistic locks, 163
Session interface
and events, 198
and threads, 173
createCriteria() method, 131
createQuery() method, 146
createSQLQuery() method, 157
delete() method, 90
evict() method, 171
flush() method, 89, 161
get() method, 49, 219
getEntityName() method, 88
getldentifier() method, 100
introduction, 159
isDirty() method, 89
load() method, 88
loading objects, 87
methods, 159-160
methods for working with filters, 203, 205
org.hibernate package, 24, 225
org.hibernate.classic package, 225
refreshing objects, 89
retrieving, 16
save() method, 200
saveOrUpdate() method, 86, 200
saving objects, 86
update() method, 49
using, 50
SessionEventListenerConfig class
listeners field as instance of, 197
SessionFactory class
compared to ConnectionPool, 159
creating sessions, 49
dynamic-map entity mode, 93

SessionFactory interface
close() method, 24
creating instance, 16
instantiating, 15
introduction, 23-24
openSession() method, 24
sessions, 49
introduction, 159
Session and related object, 49-50
<set> collection element, 109
introduction, 109
set keyword, 154
setEntity() method
Query interface, 151
setFirstResult() method
Criteria interface, 138, 151
Query interface, 151
setMaxResults() method
Criteria interface, 138-139, 151
Query interface, 151-152
setNamingStrategy() method
Configuration class, 23
setParameter() method
Filter interface, 205
setParameterList() methods
Filter interface, 205
setProjection() method
Criteria interface, 141-142
SettingsFactory interface, 16
simple application, 27
building Data Access Objects, 52-59
creating Hibernate configuration file,
31-33
creating tables, 47-49
example client, 59-63
installing tools, 27
Ant build tool, 29-31
Hibernate 3, 27
HSQL database, 28
message of the day, 33-38
Simple application
online billboard classes example, 38
simple application
persisting multiple objects, 38
creating object mappings, 44-47
creating persistence classes, 39-44
sessions
Session and related objects, 49-50
using the Session, 50
Software class, 134
sort attribute
<map> collection element, 112
<set> collection element, 109
Spring framework, 214
HibernateTemplate class, 14

INDEX

SQL
and BMP, 7
and HQL, 145
commenting generated SQL, 148
dialects, 24
functions, using in where clause, 149
logging underlying SQL in HQL queries,
147
named queries, 155-156
putting into mapping, 217-219
using native SQL, 157-158
sql() method
Expression class, 135
<sql-delete> tag, 217
<sql-insert> tag, 217-218
invoking stored procedures, 220
<sql-update> tag, 217
SQLQuery interface
methods, 157
org.hibernate package, 157
sqlRestriction() method
Restrictions class, 135, 138
StatisticsService class, 15
stored procedures
Hibernate supports for numerous
products, 213
invoking, 219-221
strategy attribute
@Inheritance annotation, 75
Structured Query Language. See SQL
<subclass> element, 93
subselect attribute
<class> element, 99
collection elements, 108
<one-to-one> element, 105
sum() aggregate function, 154
Projection class, 141
Supplier class, 131
surrogate keys and primary keys, 213

T

table attribute
@AssociationTable annotation, 75
<class> element, 99
collection elements, 109
<one-to-one> element, 105
tables
creating, 47-49
relation between classes in object model,
214
targetEntity attribute
@ManyToOne annotation, 72
@OneToMany annotation, 73
Test Harness
building, 59-63

241

242 INDEX

threads, introduction, 173 V
Transaction class Validatable interface, 85
obtalplng, 161 validate() method
transactions, 161 Filter interface, 205
ACID tests, 162 values
obtaining Transaction object from creating custom values, 95
database, 161 introduction, 94-95
using global isolation level, 163 standard value names, 94
transient objects, 85 views
triggers, compared to interceptors, 189 using for mapping, 216-217
type attribute
<id> element, 100 w
<property> element, 102 where attribute
types <class> element, 99
components, 93 collection elements, 109
entities, 93 <one-to-one> element, 105
values, 94 where clause, 149
U expressions used in, 149
g . use of filters instead of, 203-204
unique attribute using to delete entries, 155
@JoinColumn annotation, 72
<component> element, 103 X
<many-to-many> element, 107 XDoclet tool
<property> element, 102 as alternative to CodeGenerator tool, 183
uniqueConstraints attribute solution described, 66
@Table and @SecondaryTable XML configuration
annotations, 70 example, 20
uniqueResult() method hibernate.cfg.xml file, 20

Criteria interface, 139
Query interface, 152
unsaved-value attribute
<id> element, 100
updatable attribute
@JoinColumn annotation, 72
update attribute
<component> element, 103
<many-to-many> element, 107
<property> element, 102
update() method
Session interface, 49, 160
upgrading from Hibernate 2, 223
package and DTD changes, 223
UserDAQO class
building, 53
UserType interface
org.hibernate.foo package, 95

	Table of Content
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Index

